Skip to main content
Log in

A new strategy to assemble enhanced magnetic–photoluminescent bifunction into a flexible nanofiber

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new type of magnetic–photoluminescent bifunctional [Fe3O4@Y2O3:Eu3+]/polyvinyl pyrrolidone (PVP) flexible composite nanofibers were successfully prepared via electrospinning through dispersing Fe3O4@Y2O3:Eu3+ core–shell structured nanoparticles (NPs) into the PVP matrix. The structure, morphology, and properties of the flexible composite nanofibers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and fluorescence spectroscopy. The diameter of [Fe3O4@Y2O3:Eu3+]/PVP nanofibers is ca. 128.57 ± 36.72 nm. Fluorescence emission peaks of Eu3+ in both Fe3O4@Y2O3:Eu3+ NPs and [Fe3O4@Y2O3:Eu3+]/PVP nanofibers are observed and assigned to the energy levels transitions of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (533, 586, 592, 599 nm), 5D0 → 7F2 (612 nm), and 5D0 → 7F3 (629 nm) of Eu3+ ions. Compared with Fe3O4/Y2O3:Eu3+/PVP nanofibers, [Fe3O4@Y2O3:Eu3+]/PVP nanofibers possess much stronger luminescence. The as-prepared [Fe3O4@Y2O3:Eu3+]/PVP flexible composite nanofibers simultaneously exhibit excellent magnetism and photoluminescent performance. The intensities of magnetism and luminescence of the composite nanofibers can be simultaneously tuned by adjusting the amount of Fe3O4@Y2O3:Eu3+ NPs introduced into the nanofibers. The high performance [Fe3O4@Y2O3:Eu3+]/PVP flexible composite nanofibers have potential applications in bioimaging, cell separation, and future nanomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX, Xu J (2012) Elecrospinning of preparation and properties of magnetic–photoluminescent bifunctional coaxial nanofibers. J Mater Chem 22:14438–14442

    Article  Google Scholar 

  2. Xi PX, Cheng K, Sun XL, Zeng ZZ, Sun SH (2012) Magnetic Fe3O4 nanoparticles coupled with a fluorescent Eu complex for dual imaging application. Chem Commun 48:2952–2954

    Article  Google Scholar 

  3. Wang HG, Li YX, Sun L, Li YC, Wang W, Wang S, Xu SF, Yang QB (2010) Electrospun novel bifunctional magnetic–photoluminescent nanofibers based on Fe2O3 nanoparticles and europium complex. J Colloid Interface Sci 350:396–401

    Article  Google Scholar 

  4. Sun XJ, Liu FT, Sun L, Wang Q (2012) Well-dispersed Fe3O4/SiO2 nanoparticles synthesized by a mechanical stirring and ultrasonication assisted Stober method. J Inorg Organomet Polym Mater 22:311–315

    Article  Google Scholar 

  5. Xuan SH, Wang F, Lai J, Sham K, Wang Y, Lee S, Yu J, Cheng C, Leung K (2011) Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl Mater Interfaces 3:237–244

    Article  Google Scholar 

  6. Cedric B, Thierry G, Antigoni A (2011) Biological applications of rare-earth based nanoparticles. ACS Nano 5(11):8488–8505

    Article  Google Scholar 

  7. Thandar M, Ray G, Hergen E (2012) Fast pyroprobe-heating-induced structural changes of Y2O3:Eu precursors and their optical signatures. J Phys Chem C 116:1687–1693

    Google Scholar 

  8. Hou XR, Zhou SM, Li YK, Li WJ (2010) Luminescent properties of nano-sized Y2O3:Eu fabricated by co-precipitation method. J Alloys Compd 494:382–385

    Article  Google Scholar 

  9. Runowski M, Grzyb T, Lis S (2011) Bifunctional luminescent and magnetic core/shell type nanostructures Fe3O4@CeF3:Tb3+/SiO2. J Rare Earths 29(12):1117–1121

    Article  Google Scholar 

  10. Ma ZY, Dosi D, Mikaela N, Shirley JG (2009) Synthesis and bio-functionalization of multifunctional magnetic Fe3O4@Y2O3:Eu3+ nanocomposites. J Mater Chem 19:4695–4700

    Article  Google Scholar 

  11. Wang Q, Yang XW, Yu LX, Yang H (2011) Magnetic and luminescent properties of Fe/Fe3O4@Y2O3:Eu nanocomposites. J Alloys Compd 509:9098–9104

    Article  Google Scholar 

  12. Liu DM, Tong LZ, Shi JH, Yang XW, Yang H (2012) Synthesis and properties of Fe/Fe3O4 nanocomposites coated with ZnS. J Mater Sci Mater Electron 23:464–467

    Article  Google Scholar 

  13. Wong HT, Chan HL, Hao JH (2009) Magnetic and luminescent properties of Multifunctional GdF3:Eu3+ nanoparticles. Appl Phys Lett 95:510–512

    Article  Google Scholar 

  14. Yang ZS (2011) Magnetic and luminescent dual-functional SiO2 beads created through controlled sol–gel process. Adv Mater Lett 2(3):195–199

    Google Scholar 

  15. Xu Y, Karmakar A, Wang DY, Mahmood M, Watanabe F, Zhang YB, Fejleh A, Fejleh P, Li ZR, Kannarpady G, Ali S, Biris A (2010) Multifunctional Fe3O4 cored magnetic–quantum dot fluorescent nanocomposites for RF nanohyperthermia of cancer cells. J Phys Chem C 114:5020–5026

    Article  Google Scholar 

  16. Runowski M, Grzyb T, Lis S (2012) Magnetic and luminescent hybrid nanomaterials based on Fe3O4 nanocrystals and GdPO4:Eu3+ nanoneedles. J Nanopart Res 14:1188–1195

    Article  Google Scholar 

  17. Lu P, Zhang JL, Liu YL, Sun DH, Liu GX, Hong GY, Zuan NJ (2010) Synthesis and characteristic of the Fe3O4@SiO2@Eu(DBM)3·2H2O/SiO2 luminomagnetic microspheres with core–shell structure. Talanta 83:450–457

    Article  Google Scholar 

  18. Peng HX, Liu GX, Dong XT, Wang JX, Xu J, Yu WS (2011) Preparation and characteristics of Fe3O4@YVO4:Eu3+ bifunctional magnetic–luminescent nanocomposites. J Alloys Compd 509:6930–6934

    Article  Google Scholar 

  19. Wang W, Zou M, Chen KZ (2010) Novel Fe3O4@YPO4:Re (Re = Tb, Eu) multifunctional magnetic–fluorescent hybrid spheres for biomedical applications. Chem Commun 46:5100–5102

    Article  Google Scholar 

  20. Feng J, Song SY, Deng RP, Fan WQ, Zhang HJ (2010) Magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir 26:3596–3600

    Article  Google Scholar 

  21. Tong LZ, Shi JH, Liu DM, Li QH, Ren XZ, Yang H (2012) Luminescent and magnetic properties of Fe3O4@SiO2@Y2O3:Eu3+ composites with core–shell structure. J Phys Chem C 116:7153–7157

    Article  Google Scholar 

  22. Yu XG, Shan Y, Li GC, Chen KZ (2011) Synthesis and characterization of bifunctional magnetic–optical Fe3O4@SiO2@Y2O3:Yb3+, Er3+ near-infrared-to-visible up-conversion nanoparticles. J Mater Chem 21:8104–8108

    Article  Google Scholar 

  23. Zhao L, Chen DL, Wei MH, Yao HQ, Li M (2013) Preparation of a recombinant spider silk protein/PCL blend submicrofibrous mat and its cytocompatibility. Polym Polym Compos 21(2):85–86

    Google Scholar 

  24. Patel AC, Li SX, Wang C, Zhang WJ, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19:1231–1238

    Article  Google Scholar 

  25. Vrieze S, Camp T, Nelvig A, Hagstrom B, Westbroek P, Clerck K (2009) The effect of temperature and humidity on electrospinning. J Mater Sci 44:1357–1362. doi:10.1007/s10853-008-3010-6

    Article  Google Scholar 

  26. Lin CR, Tsai TC, Chung M, Lu SZ (2009) Synthesis and characterization of magnetic nanoparticles embedded in polyvinyl pyrrolidone nanofiber film by electrospinning method. J Appl Phys 105:1–3

    Google Scholar 

  27. Hofman K, Tucker N, Stanger J, Staiger M, Marshall S, Hall B (2012) Effects of the molecular format of collagen on characteristics of electrospun fibres. J Mater Sci 47:1148–1155. doi:10.1007/s10853-011-5775-2

    Article  Google Scholar 

  28. Liu DY, Yuan XW, Bhattacharyya D (2012) The effects of cellulose nanowhiskers on electrospun poly(lactic acid) nanofibers. J Mater Sci 47:3159–3165. doi:10.1007/s10853-011-6150-z

    Article  Google Scholar 

  29. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX, Xu J (2012) Electrospinning preparation and properties of Fe3O4/Eu(BA)3phen/PVP magnetic–photoluminescent bifunctional composite nanofibers. J Nanopart Res 14:1203–1209

    Article  Google Scholar 

  30. Ma QL, Yu WS, Dong XT, Wang JX, Liu GX (2013) Electrospinning fabrication and properties of Fe3O4/Eu(BA)3phen/PMMA magnetic–photoluminescent bifunctional composite nanoribbons. Opt Mater 35:526–530

    Article  Google Scholar 

  31. Ma QL, Wang JX, Dong XT, Yu WS, Liu GX (2014) Fabrication of magnetic–fluorescent bifunctional flexible coaxial nanobelts by electrospinning using a modified coaxial spinneret. ChemPlusChem 79(2):290–297

    Article  Google Scholar 

  32. Ma QL, Yu WS, Dong XT, Wang JX, Liu GX (2014) Janus nanobelt: fabrication, structure and enhanced magnetic–fluorescent bifunctional performance. Nanoscale 6(5):2945–2952

    Article  Google Scholar 

  33. Gai GQ, Wang LY, Dong XT, Zheng CM, Yu WS, Wang XJ, Xiao XF (2013) Electrospinning preparation and properties of magnetic–photoluminescent bifunctional bistrand aligned composite nanofibers bundles. J Nanopart Res 15(4):1539–1547

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh 5-year plan period (Under Grant No. 2010JYT01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Wang, J., Dong, X. et al. A new strategy to assemble enhanced magnetic–photoluminescent bifunction into a flexible nanofiber. J Mater Sci 49, 5418–5426 (2014). https://doi.org/10.1007/s10853-014-8253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8253-9

Keywords

Navigation