Skip to main content
Log in

Electrochemical sensing of ethylenediamine based on cuprous oxide/graphene hybrid structures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An electrochemical sensor based on in situ synthesized Cu2O microparticles–Cu2O nanowires–graphene (Cu2O MPs–Cu2O NWs–graphene) composite for sensitive detection of ethylenediamine (EDA) is reported. X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, field emission transmission electron microscopy, and energy-dispersive X-ray spectroscopy were utilized to characterize the composition and morphology of the composite. The electrochemical behaviors of EDA at the Cu2O MPs–Cu2O NWs–graphene composite modified electrode were investigated by electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry. The electrochemical sensor exhibited excellent analytical performance for EDA detection with low detection limit of 3.83 × 10−5 M (S/N = 3) and a reproducibility of 1.1 % relative standard deviation. The modified electrode exhibited a rapid response to EDA within 5 s and the amperometric signal showed a good linear correlation to EDA concentration in a broad range from 0.25 to 1.25 mM with a correlation coefficient of R = 0.99699. The superior electrochemical performances of Cu2O MPs–Cu2O NWs–graphene composite are attributed to their peculiar composite structure and the synergistic effects between Cu2O MPs–Cu2O NWs and graphene [Huang et al., Sens Actuators B 178:671–677, 2013; Luo et al., Anal Chim Acta 709:47–53, 2012].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191

    Article  Google Scholar 

  2. Novoselo KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  3. Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM (2010) Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22:5695–5699

    Article  Google Scholar 

  4. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  5. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  6. Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM (2010) Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J Struct Biol 170:152–156

    Article  Google Scholar 

  7. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  8. Bai S, Shen XP (2012) Graphene-inorganic nanocomposites. RSC Adv 2:64–98

    Article  Google Scholar 

  9. Wang SY, Jiang SP, Wang X (2011) Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim Acta 56:3338–3344

    Article  Google Scholar 

  10. Lian PC, Zhu XF, Xiang HF, Li Z, Yang WS, Wang HH (2010) Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840

    Article  Google Scholar 

  11. Ramesha GK, Sampath S (2011) In-situ formation of graphene-lead oxide composite and its use in trace arsenic detection. Sens Actuators B 160:306–311

    Article  Google Scholar 

  12. Xu TG, Zhang LW, Cheng HY, Zhu YF (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B-Environ 101:382–387

    Article  Google Scholar 

  13. Wu JJ, Zhang D, Wang Y, Wan Y, Hou BY (2012) Catalytic activity of graphene-cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J Power Sour 198:122–126

    Article  Google Scholar 

  14. Kottegoda IM, Idris NH, Lu L, Wang JZ, Liu H (2011) Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge- discharge application. Electrochim Acta 56:5815–5822

    Article  Google Scholar 

  15. Liu C, Alwarappan S, Chen ZF (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833

    Article  Google Scholar 

  16. Huang KJ, Wang L, Li J, Liu YM (2013) Electrochemical sensing based on layered MoS2-graphene composites. Sens Actuators B 178:671–677

    Article  Google Scholar 

  17. Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B 157:310–313

    Article  Google Scholar 

  18. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors-A review. Electroanalysis 22:1027–1036

    Article  Google Scholar 

  19. Li Y, Liu Y, Fu YJ, Wei TT, Guyader LL, Gao G, Liu RS, Chang YZ, Chen CY (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411

    Article  Google Scholar 

  20. Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45

    Article  Google Scholar 

  21. Deng XJ, Lu LL, Li HW (2010) The adsorption properties of Pb(II) and Cd (II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183:923–930

    Article  Google Scholar 

  22. Wang C, Feng C, Gao YJ (2011) Preparation of a graphene-based magnetic nanocomposite for the removal of anorganic dye from aqueous solution. Chem Eng J 173:92–97

    Article  Google Scholar 

  23. Fan Y, Huang KJ, Niu DJ, Yang CP, Jing QS (2011) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685–4690

    Article  Google Scholar 

  24. Yuan BQ, Xu CY, Deng DH, Xing Y, Liu L, Pang H, Zhang DJ (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712

    Article  Google Scholar 

  25. Li LM, Du ZF, Liu S, Hao QY, Wang YG, Li QH, Wang TH (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposites. Talanta 82:1637–1641

    Article  Google Scholar 

  26. Kong LJ, Ren ZY, Zheng NN, Du SC, Wu J, Tang JL, Fu HG (2014) Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res 2:469–480

    Google Scholar 

  27. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  Google Scholar 

  28. Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339

    Article  Google Scholar 

  29. Xu C, Wang X, Yang LC, Wu YP (2009) Fabrication of a graphene-cuprous oxide composite. J Solid State Chem 182:2486–2490

    Article  Google Scholar 

  30. Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364

    Article  Google Scholar 

  31. Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233

    Article  Google Scholar 

  32. Xu YH, Liang DH, Liu ML, Liu DZ (2008) Preparation and characterization of Cu2O-TiO2: efficient photocatalytic degradation of methylene blue. Mater Res Bull 43:3474–3482

    Article  Google Scholar 

  33. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  34. Du ZF, Yin XM, Zhang M, Hao QY, Wang YG, Wang TH (2010) In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett 64:2076–2079

    Article  Google Scholar 

  35. Hwang GL, Hwang KC, Shieh YT, Lin SJ (2003) Preparation of carbon nanotube encapsulated copper nanowires and their use as a reinforcement for Y-Ba-Cu-O superconductors. Chem Mater 15:1353–1357

    Article  Google Scholar 

  36. Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CM (2010) Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl Mater Interfaces 2:3092–3099

    Article  Google Scholar 

  37. Wang WZ, Varghese OK, Ruan CM, Paulose M, Grimes CA (2003) Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. J Mater Res 18:2756–2759

    Article  Google Scholar 

  38. Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132

    Article  Google Scholar 

  39. Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53

    Article  Google Scholar 

  40. Hu YW, Li FH, Bai XX, Li D, Hua SC, Wang KK, Niu L (2011) Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem Commun 47:1743–1745

    Article  Google Scholar 

  41. Du Y, Guo SJ, Dong SJ, Wang EK (2011) An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids. Biomaterials 32:8584–8592

    Article  Google Scholar 

  42. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Eletroanal Chem 101:19–28

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant No. 51221001, the Programme of Introducing Talents of Discipline to Universities under Grant No. B08040 and the National “973” Project of the People’s Republic of China under Grant No. 2011CB605806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezhi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, K., Li, H. et al. Electrochemical sensing of ethylenediamine based on cuprous oxide/graphene hybrid structures. J Mater Sci 50, 4288–4299 (2015). https://doi.org/10.1007/s10853-015-8981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8981-5

Keywords

Navigation