Skip to main content

Advertisement

Log in

Influences of hydrogen and textural anisotropy on the microstructure and mechanical properties of duplex stainless steel at high strain rate (~105 s−1)

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Duplex stainless steels (DSS) have exceptional mechanical properties, such as high strength and ductility, and are commonly used for pressure vessels and underwater pipelines. One of the main problems experienced in maximizing DSS service life is their interaction with hydrogen. Hydrogen, which is common to most manufacturing processes and services, can lead to the deleterious effect known as hydrogen embrittlement. The susceptibility of steels to hydrogen failure is directly related to hydrogen’s interaction with steel’s defects (traps), and therefore grain texture can have a major influence on the trapping phenomenon. The purpose of this study is to analyze the influences of hydrogen and textural anisotropy on DSS mechanical properties at high strain rate (~105 s−1). This includes the influence of hydrogen on crystallographically isotropic (equiaxed grains) and in crystallographically anisotropic (elongated grains) DSS on dynamic properties. The simulation of DSS exposed to explosions during extreme conditions of failure was performed by planar shock wave experiments at a very high pressure (~19 GPa). The great importance of these experiments is their ability to change the plasticity and deformation mechanism of the metal, and therefore, provide new insights into hydrogen behavior at high deformation levels. The effect of grain texture on dynamic properties was shown to play an important role in the elastic–plastic response at high strain rate. This phenomenon repeats itself when hydrogen is involved in the process. It was shown that the susceptibility to hydrogen embrittlement decreases at very high pressures ≤8 GPa for elongated grains and ≤19 GPa for equiaxed grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Nilsson JO (1992) Super duplex stainless steels. Mater Sci Technol 8:685–700

    Article  Google Scholar 

  2. Alvarez-Armas I (2008) Duplex stainless steels: brief history and some recent alloys. Recent Pat Mech Eng 1:51–57

    Article  Google Scholar 

  3. Bar R, Dabah E, Eliezer D, Kannengiesser (2011) T and Boellinghaus T The influence of hydrogen on thermal desorption processes in structural materials. Proc Eng 10:3668–3676

    Article  Google Scholar 

  4. Rozenak P, Zevin L, Eliezer D (1984) Hydrogen effects on phase transformations in austenitic stainless steels. J Mater Sci 19:567–573. doi:10.1007/BF00553581

    Article  Google Scholar 

  5. Rozenak P, Eliezer D (1987) Phase changes related to hydrogen-induced cracking in austenitic stainless steel. Acta Met 35:2329–2340

    Article  Google Scholar 

  6. Rozenak P, Eliezer D (1984) Effects of ageing after cathodic charging in austenitic stainless steels. J Mater Sci 19:3873–3879. doi:10.1007/BF00980750

    Article  Google Scholar 

  7. Rozenak P, Eliezer D (1988) Nature of the γ and γ*phases in austenitic stainless steels cathodically charged with hydrogen. Metall Trans A 19:2860–2862

    Article  Google Scholar 

  8. Beachem CD (1972) A new model for hydrogen-assisted cracking (hydrogen ‘embrittlement’). Metall Trans 3:441–455

    Article  Google Scholar 

  9. Tiwari GP, Bose A, Chakravartty JK, Wadekar SL et al (2000) A study of internal hydrogen embrittlement of steels. Mater Sci Eng A 268:269–281

    Article  Google Scholar 

  10. Kim Y, Kim Y, Kim D et al (2011) Effects of hydrogen diffusion on the mechanical properties of austenite 316L steel at ambient temperature. Mater Trans 52:507–513

    Article  Google Scholar 

  11. Brass AM, Chene J (2006) Hydrogen uptake in 316L stainless steel Consequences on the tensile properties. Corros Sci 48:3222–3242

    Article  Google Scholar 

  12. Rogers HC (1956) The influence of hydrogen on the yield point in iron. Acta Metall 4:114–117

    Article  Google Scholar 

  13. Chen SS, Wu TI, Wu JK (2004) Effects of deformation on hydrogen degradation in a duplex stainless steel. J Mater Sci 39:67–71. doi:10.1023/B:JMSC.0000007729.14528.a8

    Article  Google Scholar 

  14. Woei-Shyan L, Chi-Feng L (2001) Impact properties and microstructure evolution of 304L. Mater Sci Eng A 308:124–135

    Article  Google Scholar 

  15. Silverstein R, Eliezer D, Glam B, Moreno D, Eliezer S (2014) Influence of hydrogen on microstructure and dynamic strength of lean duplex stainless steel. J Mater Sci 49:4025–4031. doi:10.1007/s10853-014-8075-9

    Article  Google Scholar 

  16. Silverstein R, Eliezer D, Glam B, Moreno D (2014) Dynamic strength of duplex steel in the presence of hydrogen. In: Steely hydrogen conference proceedings, pp 662–666

  17. Gray GT (2012) High-strain-rate deformation: mechanical behavior and deformation substructures induced. Annu Rev Mater Res 42:285–303

    Article  Google Scholar 

  18. Hemsing WF (1979) Velocity sensing interferometer (VISAR) modification. Rev Sci Instrum 50:73–78

    Article  Google Scholar 

  19. Barker LM (1972) Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys 43:4669–4675

    Article  Google Scholar 

  20. Gray GT, Bourne NK, Vecchio KS, Millett JCF (2010) Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel and 1080 eutectoid steel. Int J Fract 163:243–258

    Article  Google Scholar 

  21. Robertson IM, Sofronis P, Nagao A et al (2015) Hydrogen embrittlement understood. Metall Mater Trans B 46:1085–1103

    Article  Google Scholar 

  22. Huang F, Li XG, Liu J et al (2011) Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel. J Mater Sci 46:715–722. doi:10.1007/s10853-010-4799-3

    Article  Google Scholar 

  23. Choo WY, Lee JY (1982) Hydrogen trapping phenomena in carbon steel. J Mater Sci 17:1930–1938. doi:10.1007/BF00540409

    Article  Google Scholar 

  24. Silverstein R, Eliezer D, Glam B, Eliezer S, Moreno D (2015) Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel. J Alloys Compd 648:601–608

    Article  Google Scholar 

  25. Silverstein R, Eliezer D (2015) Hydrogen trapping mechanism of different duplex stainless steels alloys. J Alloys Compd 644:280–286

    Article  Google Scholar 

  26. Silverstein R, Glam B, Eliezer D, Moreno D and Eliezer S (2015) The influence of hydrogen on the microstructure and dynamic strength of duplex stainless steels. PhD, Dissertation, Ben-Gurion University, Beersheba

  27. Asay JR (1993) High-pressure shock compression of solids. Springer, New York

    Book  Google Scholar 

  28. Tarabay A, Seaman L, Curran DR et al (2003) Spall fracture, 1st edn. Springer, New York

    Google Scholar 

  29. Kanel GI, Razorenov SV, Fortov VE (2004) Shock-wave phenomena and the properties of condensed matter. Springer, New York

    Book  Google Scholar 

  30. Taylor JW (1965) Dislocation dynamics and dynamic yielding. J Appl Phys 36:3146–3150

    Article  Google Scholar 

  31. Marchi San C, Somerday BP, Zelinski J (2007) Mechanical properties of super suplex stainless steel 2507 after gas phase thermal precharging with hydrogen. Metall Mater Trans A 28:2763–2775

    Article  Google Scholar 

  32. Olden V, Thaulow C, Johnsen R (2008) Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels. Mater Des 29:1934–1948

    Article  Google Scholar 

  33. Abraham DP, Altstetter C (1995) The effect of hydrogen on the yield and flow stress of an austenitic stainless steel. Metall Mater Trans A 26:2849–2858

    Article  Google Scholar 

  34. Ghosh SK, Mondal S (2012) Effect of heat treatment on microstructure and mechanical properties of duplex stainless steel. Trans Indian Inst Met 61:33–37

    Article  Google Scholar 

  35. Badji R, Belkessa B, Maza H et al (2004) Effect of post weld heat treatment on microstructure and mechanical properties of welded 2205 duplex stainless steel. Trans Indian Inst Met 470:217–221

    Google Scholar 

  36. Silverstein R, Glam B, Eliezer D, Eliezer S, Moreno D (2015) The influence of inclusions and hydrogen on the microstructure and dynamic strength of materials. In: Shock compression of condensed matter conference proceeding

  37. Silverstein R, Glam B, Eliezer D, Moreno D and Eliezer S (2016) Hydrogen trapping at high strain rate (~10 5 s −1) in duplex stainless steel. Int J Impact Eng (submitted)

  38. West AJ, Louthan M (1982) Hydrogen effects on the tensile properties of 21-6-9 stainless steel. Metall Trans A 13:2049–2058

    Article  Google Scholar 

  39. Zakroczymski T, Glowacka A, Swiatnicki W (2005) Effect of hydrogen concentration on the embrittlement of a duplex stainless steel. Corros Sci 47:1403–1414

    Article  Google Scholar 

  40. Abramov E, Eliezer D (1988) Trapping of hydrogen in helium-implanted metals. J Mater Sci Lett 7:108–110

    Article  Google Scholar 

  41. Maroef I, Olson DL, Eberhart M, Edwards GR (2002) Hydrogen trapping in ferritic steel weld metal. Int Mater Rev 47:191–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Silverstein.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silverstein, R., Eliezer, D. Influences of hydrogen and textural anisotropy on the microstructure and mechanical properties of duplex stainless steel at high strain rate (~105 s−1). J Mater Sci 51, 10442–10451 (2016). https://doi.org/10.1007/s10853-016-0264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0264-2

Keywords

Navigation