Skip to main content
Log in

Microwave dielectric properties of (1 − x)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3–y wt% ZnNb2O6 ceramics with near-zero temperature coefficient

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microstructures and the microwave dielectric properties of (1 − x)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3−y wt% ZnNb2O6 (x = 0.05–0.08, y = 2–8) ceramics system prepared by conventional solid-state route were investigated. The crystalline phases and the microstructures of the ceramics were characterized by means of X-ray diffraction and scanning electron microscopy. Zn2+ partially replaced Mg2+ in Mg(Sn0.05Ti0.95)O3 and formed the ilmenite-type (Mg1−δZnδ)(Sn0.05Ti0.95)O3 phase. Second phase (Mg1−δZnδ)(Sn0.05Ti0.95)2O5 increased remarkably when excess ZnNb2O6 added. ZnNb2O6 as additives could not only effectively lower the sintering temperature of the ceramics to 1320 °C, but also promote the densification. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and (Ca0.8Sr0.2)TiO3 content. The optimized microwave dielectric properties with ε r  ~ 22.13, Q × f value ~60,613(at 7 GHz) and τ f value ~0.4 ppm/ °C were achieved for (1 − x)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3–y wt% ZnNb2O6 (x = 0.07, y = 4) sintered at 1320 °C for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 89, 2063–2072 (2006)

    Google Scholar 

  2. P.V. Bijumon, A.P. Freundorfer, M. Sayer, Y.M.M. Antar, High gain on-chip dielectric resonator antennas using silicon technology for millimeter wave wireless links. in Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, CCECE, (2007) 804

  3. R.C. Kell, A.C. Greenham, G.C.E. Olds, High-permittivity temperature stable ceramic dielectrics with low microwave loss. J Am Ceram Soc 56, 352 (1973)

    Article  Google Scholar 

  4. K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69 (1989)

    Article  Google Scholar 

  5. C.F. Tseng, Relationships between Zr substitution for Ti and microwave dielectric properties in Mg(ZrxTi1−x)O3 ceramics. J. Alloys Compd. 39, 9447 (2011)

    Article  Google Scholar 

  6. M. Zhang, L. Li, W. Xia et al., Structure and properties analysis for MgTiO3 and (Mg0.97M0.03) TiO3(M=Ni, Zn, Co and Mn) microwave dielectric materials. J. Alloys Compd. 537, 76 (2012)

    Article  Google Scholar 

  7. C.L. Huang, Y.W. Tseng, J.Y. Chen et al., Dielectric properties of high-Q (Mg1−xZnx)1.8Ti1.1O4 ceramics at microwave frequency. J. Eur. Ceram. Soc. 32, 2365 (2012)

    Article  Google Scholar 

  8. C.F. Tseng, Microwave dielectric properties of a new ultra low loss pervoskite ceramic. J. Am. Ceram. Soc. 91, 4125 (2008)

    Article  Google Scholar 

  9. J.H. Sohn, Y. Inaguma, S.O. Yoon et al., Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn. J. Appl. Phys. 33, 5466 (1994)

    Article  Google Scholar 

  10. H. Su, S. Wu, Studies on the (Mg, Zn) TiO3–CaTiO3 microwave dielectric ceramics. Mater. Lett. 59, 2337 (2005)

    Article  Google Scholar 

  11. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010)

    Google Scholar 

  12. C.F. Tseng, C.H. Hsu, A new compound with ultra low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 92, 1149 (2009)

    Article  Google Scholar 

  13. P.L. Wise, I.M. Reaney, W.E. Lee et al., Structure-microwave property relations in (SrxCa(1−x))n+1TinO3n+1. J. Eur. Ceram. Soc. 21, 1723 (2001)

    Article  Google Scholar 

  14. Cheng-Liang Huang, Chung-Long Pan, Shen-Jiunn Shium, Liquid phase sintering of MgTiO3–CaTiO3 microwave dielectric ceramics. Mater. Chem. Phys. 78, 111 (2003)

    Article  Google Scholar 

  15. H.T. Kim, S. Nahm, J.D. Byun, Y. Kim, Low-fired (Zn, Mg)TiO3 microwave dielectrics. J. Am. Ceram. Soc. 82, 3476 (1999)

    Article  Google Scholar 

  16. Hu Tao, Antti Uusimaki, Heli Jantunen, Seppo Leppavuori, Kajitrat Soponmanee, Somnuk Sirisoonthorn, Optimization of MgTiO3–CaTiO3 based LTCC tapes containing B2O3 for use in microwave applications. Ceram. Int. 31, 85 (2005)

    Article  Google Scholar 

  17. W. Xie, H. Zhou, H. Zhu et al., Effect of ZnO-WO3 additives on sintering behavior and microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 ceramics. Ceram. Int. 40, 6899 (2014)

    Article  Google Scholar 

  18. H.J. Lee, K.S. Hong, S.J. Kim et al., Dielectric properties of MNb2O6 compounds (where M=Ca, Mn Co, Ni, OR Zn). Mater. Res. Bull. 32, 847 (1997)

    Article  Google Scholar 

  19. M.U. Cohen, Precision lattice constants from X-ray powder photographs. Rev. Sci. Instrum. 6, 68 (1935)

    Article  Google Scholar 

  20. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  21. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18, 476 (1970)

    Article  Google Scholar 

  22. C. Vineis, P.K. Davies, T. Negas, S. Bell, Microwave dielectric properties of hexagonal perovskites. Mater. Res. Bull. 31, 431 (1996)

    Article  Google Scholar 

  23. Y.B. Chen, Improved high Q value of MgTiO3–CaTiO3 microwave dielectric resonator using WO3-doped at lower sintering temperature for microwave applications. J. Alloy. Compd. 478, 657 (2009)

    Article  Google Scholar 

  24. C.L. Huang, M.H. Weng, Improved high q value of MgTiO3–CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull. 36, 2741 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), IRT1146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Zhou, H., Zhu, H. et al. Microwave dielectric properties of (1 − x)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3–y wt% ZnNb2O6 ceramics with near-zero temperature coefficient. J Mater Sci: Mater Electron 26, 3515–3520 (2015). https://doi.org/10.1007/s10854-015-2863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2863-0

Keywords

Navigation