Skip to main content
Log in

Oxygen vacancy-mediated room temperature ferromagnetism in Sr-doped SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn1−x Sr x O2 nanoparticles (NPs) were synthesized by the sol–gel method in the present work. X-ray diffraction analyses reveal that Sr atoms are incorporated into the SnO2 NPs without forming secondary phase with Sr concentration up to 5 at.%. The room temperature photoluminescence measurements indicate that Sr doping increases the number of singly charged oxygen vacancies (V +O ) in SnO2 NPs due to the different ionic radii of Sr2+ and Sn4+. Both pure and Sr-doped SnO2 NPs are ferromagnetic and the largest saturation magnetization of 6.98 × 10−4 emu/g has been observed in Sn0.95Sr0.05O2 NPs which has the largest concentration of V +O defects. The correlation between the induced V +O defects and the enhanced ferromagnetism implies that the observed ferromagnetic ordering in Sn1−x Sr x O2 NPs is connected with V +O defects. Meanwhile, air-annealing of the samples resulting in a significant suppression of the ferromagnetism further supports this point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  Google Scholar 

  2. H. Ohno, Science 281, 951 (1998)

    Article  Google Scholar 

  3. N.H. Hong, N. Poirot, J. Sakai, Phys. Rev. B 77, 033205 (2008)

    Article  Google Scholar 

  4. G. Rahman, V.M. García-Suárez, S.C. Hong, Phys. Rev. B 78, 184404 (2008)

    Article  Google Scholar 

  5. C. Wang, Q. Wu, H.L. Ge, T. Shang, J.Z. Jiang, Nanotechnology 23, 075704 (2012)

    Article  Google Scholar 

  6. G.S. Chang, J. Forrest, E.Z. Kurmaev, A.N. Morozovska, M.D. Glinchuk, J.A. McLeod, A. Moewes, T.P. Surkova, N.H. Hong, Phys. Rev. B 85, 165319 (2012)

    Article  Google Scholar 

  7. V.B. Kamble, S.V. Bhat, A.M. Umarji, J. Appl. Phys. 113, 244307 (2013)

    Article  Google Scholar 

  8. C.W. Zhang, H. Kao, J.M. Dong, Phys. Lett. A 373, 2592 (2009)

    Article  Google Scholar 

  9. J.F. Hu, Z.L. Zhang, M. Zhao, H.W. Qin, M.H. Jiang, Appl. Phys. Lett. 93, 192503 (2008)

    Article  Google Scholar 

  10. D.Q. Gao, J.Y. Li, Z.X. Li, Z.H. Zhang, J. Zhang, H.G. Shi, D.S. Xue, J. Phys. Chem. C 114, 11703 (2010)

    Article  Google Scholar 

  11. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, P. Jena, Phys. Rev. B 77, 205411 (2008)

    Article  Google Scholar 

  12. C.D. Pemmaraju, S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005)

    Article  Google Scholar 

  13. X. Liu, J. Iqbal, Z. Wu, B. He, R. Yu, J. Phys. Chem. C 114, 4790 (2010)

    Article  Google Scholar 

  14. J.F. Wang, H.C. Chen, W.B. Su, G.Z. Zang, B. Wang, R.W. Gao, J. Alloys Compd. 413, 35 (2006)

    Article  Google Scholar 

  15. C. Kilic, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002)

    Article  Google Scholar 

  16. A. Johari, S. Srivastav, M. Sharma, M.C. Bhatnagar, J. Magn. Magn. Mater. 362, 1 (2014)

    Article  Google Scholar 

  17. L. Zhang, S.H. Ge, Y.L. Zuo, J. Wang, J. Qi, Script. Mater. 63, 953 (2010)

    Article  Google Scholar 

  18. Z.Q. Jiang, T.T. Jiang, J.F. Wang, Z.J. Wang, X.R. Xu, Z.X. Wang, R. Zhao, Z.Y. Li, C. Wang, J. Colloid Interface Sci. 437, 252 (2015)

    Article  Google Scholar 

  19. W. Zhou, X. Tang, P. Xing, W. Liu, P. Wu, Phys. Lett. A 376, 203 (2012)

    Article  Google Scholar 

  20. V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Mater. Lett. 101, 57 (2013)

    Article  Google Scholar 

  21. Y.F. Li, R. Deng, Y.F. Tian, B. Yao, T. Wu, Appl. Phys. Lett. 100, 172402 (2012)

    Article  Google Scholar 

  22. P. Chetri, B. Saikia, A. Choudhury, J. Appl. Phys. 113, 233514 (2013)

    Article  Google Scholar 

  23. G.G. Khan, S. Ghosh, K. Mandal, J. Solid State Chem. 186, 278 (2012)

    Article  Google Scholar 

  24. A. Kar, S. Kundu, A. Patra, J. Phys. Chem. C 115, 118 (2011)

    Article  Google Scholar 

  25. D. Kim, J.H. Yang, J. Hong, J. Appl. Phys. 106, 013908 (2009)

    Article  Google Scholar 

  26. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306 (2006)

    Article  Google Scholar 

  27. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  28. S. Banerjee, M. Mandal, N. Gayathri, M. Sardar, Appl. Phys. Lett. 91, 182501 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51074112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhou, W., Liang, Y. et al. Oxygen vacancy-mediated room temperature ferromagnetism in Sr-doped SnO2 nanoparticles. J Mater Sci: Mater Electron 26, 7751–7756 (2015). https://doi.org/10.1007/s10854-015-3420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3420-6

Keywords

Navigation