Skip to main content
Log in

Influence of chromium concentration on the structural, electronic structure, optical and temperature dependent magnetic properties of ZnS nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of Cr dopant on the structural, optical, magnetic properties and local electronic structure of aqueous synthesis derived Zn1−xCrxS diluted magnetic semiconductor nano crystals have systematically investigated. The nano crystalline structure and crystallite size have been estimated by X-ray diffraction measurements with Rietveld refinement and high-resolution transmission electron microscopy. Effective increase of the lattice parameter has been observed in doped samples. Raman spectroscopy has been employed to study the crystalline quality, structural disorder and defects in the host lattice. The tetrahedral coordination of the sulfur ions surrounding the zinc ions has been studied by FTIR analysis. The decrease of energy band gap for Cr doped samples has observed. Blue emission has been observed by photo luminescence spectroscopy due to defect formation (Cri) in Cr-doped samples. The local electronic structures of Zn and Cr sites are thoroughly studied by synchrotron based X-ray absorption spectroscopy comprising of both X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS). EXAFS studies indicate the presence of secondary phase within the sphalerite lattice of diluted Zn1−xCrxS nanocrystals while XANES studies exhibit single pre-edge feature. The amplitude of such pre edge is found to be independent of Cr amount on doped ZnS nanocrystals. The results demonstrated that diluted Cr3+ ions are substituted on the host ZnS nanocrystal. The Cr doped ZnS sample shows paramagnetism at room (300 K) and at low (5 K) temperature. The Cr–S bonds are the crucial premise for paramagnetic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999)

    Article  Google Scholar 

  2. O. Sahin, S. Horoz, Synthesis of Ni:ZnS quantum dots and investigation of their properties. J. Mater. Sci. 29, 16775–16781 (2018)

    Google Scholar 

  3. Y. Gao, A. Tonizzo, A. Walser, M. Potasek, R. Dorsinville, Enhanced optical nonlinearity of surfactant-capped CdS quantum dots embedded in an optically transparent polystyrene thin film. Appl. Phys. Lett. 92, 033106 (2008)

    Article  Google Scholar 

  4. R.A. Ganeev, M. Baba, M. Morita, D. Rau, H. Fujii, A.I. Ryasnyansky, N. Ishizawa, M. Suzuki, H. Kuroda, Nonlinear optical properties of CdS and ZnS nanoparticles doped into zirconium oxide films. J. Opt. A 6, 447–453 (2004)

    Article  Google Scholar 

  5. A.L. Rogach, Semiconductor Nanocrystal Quantum Dots Synthesis, Assembly, Spectroscopy and Applications (Springer, Wien, 2008)

    Google Scholar 

  6. K. Ichino, Y. Morimoto, H. Kobayashi, Molecular beam epitaxy and structural properties of ZnCrS. Phys. Status Solidi C 3, 776–779 (2006)

    Article  Google Scholar 

  7. D.V. Martyshkin, V.V. Fedorov, C. Kim, I.S. Moskalev, S.B. Mirov, Mid-IR random lasing of Cr-doped ZnS nanocrystals. J. Opt. 12, 024005 (2010)

    Article  Google Scholar 

  8. P. Kaur, S. Kumar, A. Sing, C.L. Chen, C.L. Dong, T.S. Chan, K.P. Lee, C. Srivastava, S.M. Rao, M.K. Wu, Investigations on doping induced changes in structural, electronic structure and magnetic behavior of spintronic Cr-ZnS nanoparticles. Superlattices Microst. 83, 785–795 (2015)

    Article  Google Scholar 

  9. P. Kaur, S. Kumar, A. Singh, S.M. Rao, Improved magnetism in Cr doped ZnS nanoparticles with nitrogen co-doping synthesized using chemical co-precipitation technique. J. Mater. Sci. 26, 9158–9163 (2015)

    Google Scholar 

  10. X. Zeng, J. Zhang, F. Huang, Optical and magnetic properties of Cr-doped ZnS nanocrystallites. J. Appl. Phys. 111, 123525 (2012)

    Article  Google Scholar 

  11. D.A. Reddy, A. Divya, G. Murali, R.P. Vijayalakshmin, B.K. Reddy, Synthesis and optical properties of Cr doped ZnS nanoparticles capped by 2-mercaptoethanol. Physica B 406, 1944–1949 (2011)

    Article  Google Scholar 

  12. Z. Zhang, J. Li, J. Jian, R. Wu, Y. Sun, S. Wang, Y. Ren, J. Li, Preparation of Cr- doped ZnS nanosheets with room temperature ferromagnetism via a solvothermal route. J. Cryst. Growth 372, 39–42 (2013)

    Article  Google Scholar 

  13. S. Chawla, S. Sharma, J. Shah, Fabrication of ZnS:Cr nanoparticles with super paramagnetism and fluorescence properties. Mater. Lett. 108, 189–192 (2013)

    Article  Google Scholar 

  14. B. Car, S. Medling, C. Corrado, F. Bridges, J.Z. Zhang, Probing the local structure of dilute Cu dopants in fluorescent ZnS nanocrystals using EXAFS. Nanoscale 3, 4182–4189 (2011)

    Article  Google Scholar 

  15. M. Ahtee, L. Unonius, M. Nurmela, P.A. Suortti, A Voigtian as profile shape function in Rietveld refinement. Appl. Cryst. 17, 352–357 (1984)

    Article  Google Scholar 

  16. J.I. Langford, A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Cryst. 11, 10–14 (1978)

    Article  Google Scholar 

  17. R.W.G. Wyckoff, Crystal Structures (Interscience, New York, 1964), p. 4

    Google Scholar 

  18. https://imagej.net/. Accessed 17 Nov 2017

  19. M.A. Garcia, F.E. Pinel, J.D.L. Venta, A. Quesada, V. Bouzas, J.F. Fernández, J.J. Romero, M.M.S. González, J.L. Costa-Krämer, Sources of experimental errors in the observation of nanoscale magnetism. J. Appl. Phys. 105, 013925 (2009)

    Article  Google Scholar 

  20. https://icsd.fiz-karlsruhe.de. Accessed 31 May 2017

  21. O.C. Samy, P. Olivier, A. Pavel, K. Lhoussain, H.N. Mohamed, A.H. Dalaver, H. Moussab, G. Christophe, B.J. Marie, P. Eric, Photocatalysis with chromium-doped TiO2: bulk and surface doping. ChemSusChem. 7, 1361–1371 (2014)

    Article  Google Scholar 

  22. F.M.F. De Groot, Novel techniques and approaches to unravel the nature of X-ray absorption spectra. AIP Conf. Proc. 37, 882 (2007)

    Google Scholar 

  23. H. Chen, D. Shi, J. Qi, B. Wang, Structure, electronic and magnetic properties of Cr- doped (ZnS) 12 clusters: a first-principles study. Phys. Lett. A 374, 4133–4139 (2010)

    Article  Google Scholar 

  24. H.V. Philipsborn, Crystal growth and characterization of chromium sulfo and seleno spinels. J. Cryst. Growth 9, 296–304 (1971)

    Article  Google Scholar 

  25. http://abulafia.mt.ic.ac.uk/shannon/radius.php. Accessed 31 May 2017

  26. A.L. Patterson, The diffraction of X-rays by small crystalline particles. Phys. Rev. 56, 972–977 (1939)

    Article  Google Scholar 

  27. C. Yang, G. An, X. Zhao, ZnS porous fluorescent nanostructures synthesized by a soft template approach. J. Mater. Sci. 26(5), 3324–3329 (2015)

    Google Scholar 

  28. M. Birkholz, Thin Film Analysis by X-ray Scattering (Wiley, Weinheim, 2006)

    Google Scholar 

  29. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  30. B.A. Weinstein, Phonon dispersion of zinc chalcogenides under extreme pressure and the metallic transformation. Solid State Commun. 24(9), 595–598 (1977)

    Article  Google Scholar 

  31. J. Schneider, R.D. Kirby, Raman scattering from ZnS poly types. Phys. Rev. B 6, 1290 (1972)

    Article  Google Scholar 

  32. G. Murugados, M.R. Kumar, Synthesis, optical properties of monodispersed Ni2+ doped ZnS nanoparticles. Appl. Nanosci 4, 67–75 (2014)

    Article  Google Scholar 

  33. B. Liang, L. Andrews, Infrared spectra and density functional theory calculations of group 6 transition metal sulfides in solid argon. J. Phys. Chem. A 106, 6945–6951 (2002)

    Article  Google Scholar 

  34. Y. Guo, X. Cao, X. Lan, C. Zhao, X. Xue, Y. Song, Solution-based doping of manganese into colloidal ZnO nanorods. J. Phys. Chem. C 112, 8832–8838 (2008)

    Article  Google Scholar 

  35. S.J. Gilliland, J.A. Sans, J.F. Sanchez-Royo, G. Almonacid, B. Garcia-Domene, A. Segura, G. Tobias, E. Canadell, Role of p-d and s-d interactions in the electronic structure and band gap of Zn1−xMxO (M = Cr, Mn, Fe Co, Ni, and Cu): photoelectron and optical spectroscopy and first-principles band structure calculations. Phys. Rev. B. 86, 155203 (2012)

    Article  Google Scholar 

  36. S.H. Wei, A. Zunger, Role of metal d states in II-VI semiconductors. Phys. Rev. B 37(15), 8958 (1988)

    Article  Google Scholar 

  37. Z. Deng, L. Tong, M. Flores, S. Lin, J.X. Cheng, H. Yan, Y. Liu, High quality manganese doped zinc sulfide quantum rods with tunable dual color and multiphoton emissions. J. Am. Chem. Soc. 133(14), 5389–5396 (2011)

    Article  Google Scholar 

  38. D. Denzler, M. Olschewski, K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nano crystals. J. Appl. Phys. 84(5), 2841–2845 (1998)

    Article  Google Scholar 

  39. A.A. Bol, A. Meijerink, Long-lived Mn2+ emission in nanocrystalline ZnS:Mn2+. Phys. Rev. B 58(24), R15997 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

S.Ghorai acknowledges to Council of Scientific and Industrial Research (CSIR), Govt. of India for Junior Research Fellowship & Senior Research Fellowship. AKG is thankful to DST-FIST program; to DST-PURSE program; to UGC-UPE program; to UGC-CAS program. AKG is also thankful to DST, India; DAE-BRNS; CSIR and UGC Govt. of India for financial support (Grant No.: SR/S2/CMP-0038/2008; 2011/37P/11/BRNS/1038-103(1302)/13/EMR-II, and Grant no. F.No.42-787/2013 (SR), respectively). We acknowledge to Dr. A. Banerjee for magnetic measurements and Dr. V. Sathe for Raman measurements UGC-DAE, Indore; to “Central Instrument Facility Centre” (CFIC), IITBHU for providing XRD, HRTEM measurements.

Funding

This investigation was funded by DST, DAE-BRNS and UGC, India (Grant No.: SR/S2/CMP-0038/2008, Grant no. 2011/37P/11/BRNS/1038-1 and Grant No. F. No. 42-787/2013 (SR), respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup K. Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, S., Patra, N., Bhattacharyya, D. et al. Influence of chromium concentration on the structural, electronic structure, optical and temperature dependent magnetic properties of ZnS nanocrystals. J Mater Sci: Mater Electron 30, 11652–11664 (2019). https://doi.org/10.1007/s10854-019-01524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01524-5

Navigation