Skip to main content
Log in

Design of novel three-phase PCL/TZ–HA biomaterials for use in bone regeneration applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The design of bioactive scaffold materials able to guide cellular processes involved in new-tissue genesis is key determinant in bone tissue engineering. The aim of this study was the design and characterization of novel multi-phase biomaterials to be processed for the fabrication of 3D porous scaffolds able to provide a temporary biocompatible substrate for mesenchymal stem cells (MSCs) adhesion, proliferation and osteogenic differentiation. The biomaterials were prepared by blending poly(ε-caprolactone) (PCL) with thermoplastic zein (TZ), a thermoplastic material obtained by de novo thermoplasticization of zein. Furthermore, to bioactivate the scaffolds, microparticles of osteoconductive hydroxyapatite (HA) were dispersed within the organic phases. Results demonstrated that materials and formulations strongly affected the micro-structural properties and hydrophilicity of the scaffolds and, therefore, had a pivotal role in guiding cell/scaffold interaction. In particular, if compared to neat PCL, PCL–HA composite and PCL/TZ blend, the three-phase PCL/TZ–HA showed improved MSCs adhesion, proliferation and osteogenic differentiation capability, thus demonstrating potential for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mercuri LG. Alloplastic temporomandibular joint reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:631–7.

    Article  CAS  PubMed  Google Scholar 

  2. Warnke PH, Springer ING, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo P, Bolte H, Sherry E, Behrens E. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70.

    Article  CAS  PubMed  Google Scholar 

  3. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    Article  CAS  PubMed  Google Scholar 

  4. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  5. Eppley BL, Platis JM, Sadove AM. Experimental effects of bone plating in infancy on craniomaxillofacial skeletal growth. Cleft Palate Craniofac J. 1993;30:164–9.

    Article  CAS  PubMed  Google Scholar 

  6. Schantz JT, Teoh SH, Lim TC, Endres M, Lam CX, Hutmacher DW. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng. 2003;9:113–26.

    Article  Google Scholar 

  7. Caplan AL. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 1997;3:173–85.

    Article  Google Scholar 

  9. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007;28(6):1036–47.

    Article  CAS  PubMed  Google Scholar 

  10. Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Johnson AJW. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28:45–54.

    Article  CAS  PubMed  Google Scholar 

  11. Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res. 2001;54:284–93.

    Article  CAS  PubMed  Google Scholar 

  12. Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos Sci Technol. 2005;65:2385–406.

    Article  CAS  Google Scholar 

  13. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro. Biomaterials. 2007;28:5291–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kim S, Ahn K, Park MS, Lee J, Choi CY, Kim B. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res. 2007;80A:206–15.

    Article  CAS  Google Scholar 

  15. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6:1961–76.

    Article  CAS  PubMed  Google Scholar 

  16. Di Franco CR, Cyras VP, Busalmen JP, Ruseckaite RA, Vázquez A. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym Degrad Stab. 2004;86:95–103.

    Article  CAS  Google Scholar 

  17. Dong J, Sun Q, Wang J. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials. 2004;25:4691–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gong S, Wang H, Sun Q, Xue S, Wang J. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials. 2006;27(20):3793–9.

    Article  CAS  PubMed  Google Scholar 

  19. Van Vlierberghe S, Cnudde V, Dubruel P, Masschaele B, Cosijns A, De Paepe I, Jacobs PJS, Van Hoorebeke L, Remon JP, Schacht E. Porous gelatin hydrogels. 1. Cryogenic formation and structure analysis. Biomacromolecules. 2007;8:331–7.

    Article  PubMed  Google Scholar 

  20. Vandelli MA, Rivasi F, Guerra P, Forni F, Arletti R. Gelatin microspheres crosslinked with d,l-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int J Pharm. 2001;215:175–84.

    Article  CAS  PubMed  Google Scholar 

  21. Salerno A, Oliviero M, Di Maio E, Iannace S. Thermoplastic foams from zein and gelatin. Int Polym Proc. 2007;22(5):480–8.

    CAS  Google Scholar 

  22. Marin S, Favis BD. Co-continuous morphology development in partially miscible PMMA/PC blends. Polymer. 2002;43:4723–31.

    Article  CAS  Google Scholar 

  23. Salerno A, Oliviero M, Di Maio E, Iannace S, Netti PA. Design of porous polymeric scaffolds by gas foaming of heterogeneous blends. J Mater Sci: Mater Med. 2009;20(10):2043–51.

    Article  CAS  Google Scholar 

  24. Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(dl-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res. 1997;36:1–8.

    Article  CAS  PubMed  Google Scholar 

  25. Mano JF, Reis RL, Cunha AM. Effects of moisture and degradation time over the mechanical dynamical performance of starch-based biomaterials. J Appl Polym Sci. 2000;78:2345–57.

    Article  CAS  Google Scholar 

  26. Kim H. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J Biomed Mater Res. 2007;83A:169–77.

    Article  CAS  Google Scholar 

  27. Azevedo MC, Reis RL, Claase MB, Grijpma DW, Feijen J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J Mater Sci Mater Med. 2003;14:103–7.

    Article  CAS  PubMed  Google Scholar 

  28. Shin B, Lee S, Shin Y, Balakrishanan S, Rayan R. Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone. Polym Eng Sci. 2004;44:1429–38.

    Article  CAS  Google Scholar 

  29. Chastain SR, Kundu AK, Dhar S, Calvert J, Putnam AJ. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res. 2006;78A:73–85.

    Article  CAS  Google Scholar 

  30. Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, et al. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials. 2008;29:302–13.

    Article  CAS  PubMed  Google Scholar 

  31. Tan PS, Teoh SH. Effect of stiffness of polycaprolactone (PCL) membrane on cell proliferation. Mater Sci Eng C. 2007;27:304–8.

    Article  CAS  Google Scholar 

  32. Shi K, Kokini JL, Huang Q. Engineering zein films with controlled surface morphology and hydrophilicity. J Agric Food Chem. 2009;57:2186–92.

    Article  CAS  PubMed  Google Scholar 

  33. Lange R, Lüthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell–extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol Eng. 2002;19:255–61.

    Article  CAS  PubMed  Google Scholar 

  34. Marletta G, Ciapetti G, Satriano C, Perut F, Salerno M, Baldini N. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-ε-caprolactone. Biomaterials. 2007;28(6):1132–40.

    Article  CAS  PubMed  Google Scholar 

  35. Salerno A, Iannace S, Netti PA. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating. Macromol Biosci. 2008;8:655–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by a grant of the Italian Ministry of Health, art. 12bis D. Lgs. 229/99. The authors thank Finceramica (Faenza) for supply the HA used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Salerno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salerno, A., Oliviero, M., Di Maio, E. et al. Design of novel three-phase PCL/TZ–HA biomaterials for use in bone regeneration applications. J Mater Sci: Mater Med 21, 2569–2581 (2010). https://doi.org/10.1007/s10856-010-4119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4119-0

Keywords

Navigation