Skip to main content
Log in

Simulation of heating of biological tissues in the process of ultrahigh-frequency therapy

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A physicomathematical model of the temperature distribution over the surface and the bulk of a biological object (human palm) exposed to an ultrahigh-frequency electric field (40.68 MHz) for therapeutic purposes is presented. Various approaches to studying the propagation of laser radiation and radio-frequency electromagnetic waves in biological tissues are considered. The temperature distributions in various biotissues, obtained by numerical solution of the nonstationary heat problem, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. S. Ulashchik and I. V. Lukomskii, General Physiotherapy [in Russian], Interpresservis, Knizhnyi Dom, Minsk (2003).

    Google Scholar 

  2. M. Hoque and P. Gandhi, Temperature distributions in the human leg for VLF-VHF exposures at the ANSI-recommended safety levels, IEEE Trans. Biomed. Eng., 35, No.6, 442–449 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. J. Y. Chen and P. Gandhi, Thermal implications of high SAR’s in the body extremities at the ANSI-recommended MF-VHF safety levels, IEEE Trans. Biomed. Eng., 35, No.6, 435–441 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. N. K. Uzunoglu and K. S. Nikita, Estimation of temperature distribution inside tissues heated by interstitial RF electrode hyperthermia systems, IEEE Trans. Biomed. Eng., 35, No.4, 250–255 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. H. H. Pennes, Analysis of tissue and arterial blood temperature in resting human forearm, J. Appl. Phys., 1, 93–122 (1948).

    Google Scholar 

  6. R. K. Jain, F. H. Gratham, and P. M. Gullino, Blood flow and heat transfer in Walker 256 mammary carcinoma, J. Nat. Cancer Inst., No. 62, 927–933 (1979).

    Google Scholar 

  7. W. Wulff, Discussion paper: Alternatives to the bio-heat transfer equation, Ann. N. Y. Acad. Sci., 335, 151–154 (1980).

    CAS  PubMed  Google Scholar 

  8. S. Weinbaum and L. M. Jiji, A new simplified bioheat equation for the effect of blood flow on local average tissue temperature, J. Biomech. Eng., 107, 131–139 (1985).

    CAS  PubMed  Google Scholar 

  9. National Council on Radiation Protection and Measurements. A Practical Guide to the Determination of Human Exposure to Radiofrequency Fields. NCRP Report No. 119: Bethseda, MD (1993).

  10. http://www.vh.org/adult/provider/anatomy/Human Anatomy/CrossSectionAtlas.html.

  11. K. Giering, O. Minet, I. Lamprecht, and G. Muller, Review of thermal properties of biological tissues, in: G. J. Muller and A. Roggan (Eds.) Laser-Induced Interstitial Thermotherapy, SPIE (1995), pp. 45–65.

  12. A. A. Makhanek and E. A. Bashtovaya, Influence of some rheological factors on the blood stream and the thermal state of a human organism under cold actions, in: Proc. IV Minsk Int. Forum “Heat and Mass Transfer-MIF-2000” [in Russian], 22–26 May 2000, Minsk, Vol. 7, Minsk (2000), pp. 74–84.

    Google Scholar 

  13. S. M. Danilova-Tret’yak, Thermophysical characteristics of biotissues, in: Lasers in Biomedicine [in Russian], Minsk (2003), pp. 209–213.

  14. R. G. Gordon, R. B. Roemer, and S. M. Horvath, A mathematical model of the human temperature regulatory system — transient cold exposure response, IEEE Trans. Biomed. Eng., BME-23, No.6, 434–444 (1976).

    Google Scholar 

  15. J. A. J. Stolwijk, Mathematical models of thermal regulation, Ann. N. Y. Acad. Sci., 335, 98–106 (1980).

    CAS  PubMed  Google Scholar 

  16. Z. P. Shul’man, B. M. Khusid, and I. V. Fain, Theoretical analysis of thermal processes in living biological tissues subjected to local hyperthermia. II. Analysis of the temperature fields in the case of local SHF-hyperthermia of tumors with regard for the nonstationary nonlinear perfusion of tissues, Inzh.-Fiz. Zh., 68, No.3, 430–437 (1995).

    Google Scholar 

  17. S. Danilova-Tretiak and V. Dragun, VHF electric field as a source of thermal loads in biotissue, Adv. Heat Transfer Eng., Kaunas (2003), pp. 781–784.

  18. S. M. Danilova-Tretiak, V. L. Dragun, and S. I. Sharko, Thermometric Study of Biotissues Exposed to External Actions [in Russian], Preprint No. 1 of the A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 1, pp. 106–111, January–February, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragun, V.L., Danilova-Tret’yak, S.M. & Gubarev, S.A. Simulation of heating of biological tissues in the process of ultrahigh-frequency therapy. J Eng Phys Thermophys 78, 109–114 (2005). https://doi.org/10.1007/s10891-005-0036-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-005-0036-3

Keywords

Navigation