Skip to main content
Log in

Synthesis and Characterization of Titania Nanoparticles on the Surface of Microporous Perlite Using Sol–Gel Method: Influence of Titania Precursor on Characteristics

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Titania colloidal nanoparticles have been successfully fabricated by a very simple and inexpensive sol–gel spin-coating method on the surface perlite granules. This was achieved by adjustment of the sol–gel parameters such as the precursors, spin-coating time and heating processes. Five samples were prepared using different titania e.g. Millennium, Degussa P25, titania nanoparticle, sol–gel derived titania and rutile nanoparticles precursors. Titania nanoparticles were grown on perlite granules by the controlled immobilization of titania. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to investigate the growth and morphology of the titania coating on perlite granules. The results showed surface modification of perlite granules with uniform coating of titania on supports and confirmed that the coatings are composed of aggregated crystallites of 11–61 nm in diameter, good compositional uniformity and good adherence of the fabricated titania layer on perlite granules. The synthesis of adsorptive supports for immobilization of powdery photocatalysts would show significant improvements in both practical use and degradation efficiency of photocatalysis in environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Ahmadi, M. Ashjari, R. Hosseini, J. Rahman Nia, J. Inorg. Organomet. Polym. 19, 322 (2009)

    Article  CAS  Google Scholar 

  2. M. Hosseini Zori, J. Inorg. Organomet. Polym. 21, 81 (2011)

    Article  CAS  Google Scholar 

  3. G.D. Vilakati, A.K. Mishra, S.B. Mishra, B.B. Mamba, J.M. Thwala, J. Inorg. Organomet. Polym. 20, 802 (2010)

    Article  CAS  Google Scholar 

  4. J. Zhang, C. Fu, X. Yang, W. Cao, J. Inorg. Organomet. Polym. 21, 43 (2011)

    Article  CAS  Google Scholar 

  5. J. Matos, J. Laine, J.M. Herrmann, D. Uzcategui, J.L. Brito, Appl. Catal. B 70(1–4), 461 (2007)

    CAS  Google Scholar 

  6. J. Matos, J. Laine, J.M. Herrmann, J. Catal. 200(1), 10 (2001)

    Article  CAS  Google Scholar 

  7. A. Fernández, G. Lassaletta, V.M. Jiménez, A. Justo, A.R. González-Elipe, J.M. Herrmann, H. Tahiri, Y. Aitchou, Appl. Catal. B 7(1–2), 49 (1995)

    Google Scholar 

  8. M. Faramarzpour, M. Vossoughi, M. Borgheia, Chem. Eng. J. 146, 79 (2009)

    Article  CAS  Google Scholar 

  9. Advanced Photochemical Oxidation Processes (EPA Press, Office of Research and Development, Washington, DC, 1998)

  10. J.B. Galvez, Solar Detoxification (United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, 2003)

    Google Scholar 

  11. T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, Environ. Sci. Technol. 30, 1275 (1996)

    Article  CAS  Google Scholar 

  12. J.A. Byrne, B.R. Eggins, N.M.D. Brown, B. McKinney, M. Rouse, Appl. Catal. B 17, 25 (1998)

    Article  CAS  Google Scholar 

  13. B. Tryba, A.W. Morawski, M. Inagaki, Appl. Catal. B 41, 427 (2003)

    Article  CAS  Google Scholar 

  14. I.M. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantinou, M.C. Bernard, P. Falaras, J. Photochem. Photobiol. A 149, 237 (2002)

    Article  CAS  Google Scholar 

  15. A. Brudnik, H. Czternastek, K. Zakrzewska, M. Jachimowski, Thin Solid Films 199, 45 (1991)

    Article  CAS  Google Scholar 

  16. G.A. Camacho-Bragado, F. Dixon, A. Colonna, Micron 42, 257 (2011)

    Article  CAS  Google Scholar 

  17. T. Ivankovic, J. Hrenovic, L. Sekovanic, Biochem. Eng. J. 51, 117 (2010)

    Article  CAS  Google Scholar 

  18. S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia, Appl. Catal. B 74, 53 (2007)

    Article  CAS  Google Scholar 

  19. M. Walter, M. Ruger, C. RagoX, G.C.M. Steffens, D. Hollander, O. Paar, R.H. Maier, W. Jahnen Dechent, A. Bosserhoff, H. Erli, Biomaterials 26, 2813 (2005)

    Article  Google Scholar 

  20. M.H. Habibi, M. Nasr-Esfahani, T.A. Egerton, J. Mater. Sci. 42, 6027 (2007)

    Article  CAS  Google Scholar 

  21. M.H. Habibi, M. Nasr-Esfahani, T.A. Egerton, Int. J. Photoenergy 89759 (2007)

  22. M.H. Habibi, M. Khaledi, J. Nanomater. ID 356765 (2008)

  23. M.H. Habibi, M. Khaledi, J. Iran. Chem. Soc. 5, 603 (2008)

    CAS  Google Scholar 

  24. M.H. Habibi, M. Khaledi, Z. Naturforsch. 63a, 440 (2008)

  25. M.H. Habibi, M. Khaledi, J. Adv. Oxid. Technol. 12, 231 (2009)

    CAS  Google Scholar 

  26. M.H. Habibi, R. Sheibani, J. Sol Gel Sci. Technol. 54, 195 (2010)

    Article  CAS  Google Scholar 

  27. M.H. Habibi, N. Talebian, Dyes Pigment. 73, 186 (2007)

    Article  CAS  Google Scholar 

  28. M.H. Habibi, N. Talebian, J.H. Choi, Thin Solid Films 515, 1461 (2006)

    Article  CAS  Google Scholar 

  29. B.D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, London, 1978), p. 102

    Google Scholar 

  30. JCPDS-International Center for Diffraction Data, PDF 21-1272,13-0373

  31. D.D. Beck, R.W. Siegel, J. Mater. Res. 7(10), 2840 (1992)

    Article  CAS  Google Scholar 

  32. R.I. Bickley, J.S. Leed, R.J.D. Tilley, L. Palmisano, M. Schiavello, J. Chem. Soc. Faraday Trans. 88(3), 377 (1992)

    Article  CAS  Google Scholar 

  33. J.F. Porter, Y.-G. Li, C.K. Chan, J. Mater. Sci. 34, 1523 (1999)

    Article  CAS  Google Scholar 

  34. H. Jensen, K.D. Joensen, J.E. Jorgensen, J.S. Pedersen, E.G. Sogaard, J. Nanoparticle Res. 6, 519 (2004)

    Article  CAS  Google Scholar 

  35. B. Ohtani, Y. Ogawa, S.I. Nishimoto, J. Phys. Chem. B 101, 3746 (1997)

    Article  CAS  Google Scholar 

  36. B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, J. Photochem. Photobiol. A 216, 179 (2010)

    Article  CAS  Google Scholar 

  37. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), p. 687

    Google Scholar 

  38. R.A. Spurr, H. Myers, Anal. Chem. 29, 760 (1957)

    Article  CAS  Google Scholar 

  39. S.I. Nishimoto, B. Ohtani, A. Sakamoto, T. Kagiya, Nippon. Kagaku. Kaishi. 246 (1984)

  40. S.I. Nishimoto, B. Ohtani, H. Kajiwara, T. Kagiya, J. Chem. Soc. Faraday Trans. 1(81), 61 (1985)

    Google Scholar 

  41. C. Shaoqiang, Z. Jian, F. Xiao, W. Xiaohua, L. Laiqiang, S. Yanling, X. Qingsong, W. Chang, Z. Jianzhong, Z. Ziqiang, Appl. Surf. Sci. 241, 384 (2005)

    Article  Google Scholar 

  42. Y.L. Zhang, S. Wei, F.J. Liu, Y.C. Du, S. Liu, Y.Y. Ji, T. Yokoi, T. Tatsumi, F.S. Xiao, Nano Today 4, 135 (2009)

    Article  CAS  Google Scholar 

  43. M. Janus, A.W. Morawski, Appl. Catal. B 75, 118 (2007)

    Article  CAS  Google Scholar 

  44. J.K. Zhou, M. Takeuchi, A.K. Ray, M. Anpo, X.S. Zhao, J. Colloid Interface Sci. 311, 497 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the University of Isfahan for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Habibi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, M.H., Zendehdel, M. Synthesis and Characterization of Titania Nanoparticles on the Surface of Microporous Perlite Using Sol–Gel Method: Influence of Titania Precursor on Characteristics. J Inorg Organomet Polym 21, 634–639 (2011). https://doi.org/10.1007/s10904-011-9500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-011-9500-z

Keywords

Navigation