Skip to main content
Log in

Smart Hydrogel of Carboxymethyl Cellulose Grafted Carboxymethyl Polyvinyl Alcohol and Properties Studied for Future Material Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A novel grafted copolymer was synthesized from carboxymethyl cellulose (CMC) and carboxymethyl polyvinyl alcohol (CMPVA) using adipic dihydrazide as the crosslinker. The optimized grafted CMC-g-CMPVA with formulation 3% CMC and 1% CMPVA is sensitive to different pH conditions and exhibited a high swelling capacity. The swelling percentages were 360, 1440 and 2277% at pH 1, 7 and 11, respectively and could retain the shape of the hydrogel that assists easy handling. This smart copolymer forms a hydrogel that is pH responsive that could be utilized in the specific pH environment such as in waste water management, agricultural industry, and drug delivery system. The grafted CMC-g-CMPVA was found to be biocompatible with the living cells and has excellent survival rate at lower polymer concentration and, therefore, this grafted copolymer can be employed in biomedical applications such as drug delivery system and scaffolds in the tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. El Sayed A (2014) Nucl Instrum Methods B, 321:41–48

    Article  CAS  Google Scholar 

  2. Singh B, Pal L (2011) Int J Biol Macromol 48:501–510

    Article  CAS  Google Scholar 

  3. Yang S, Fu S, Liu H, Zhou Y, Li X (2011) J Appl Polym Sci 119:1204–1210

    Article  CAS  Google Scholar 

  4. Vieira RS, Guibal E, Silva EA, Beppu MM (2007) Adsorption 13:603–611

    Article  CAS  Google Scholar 

  5. Dahlan NA, Ng SL, Pushpamalar J (2017) J Appl Polym Sci 134:44271

  6. Shankar P, Gomathi T, Vijayalakshmi K, Sudha PN (2014) Int J Biol Macromol 67:180–188

    Article  CAS  Google Scholar 

  7. Badwaik HR, Sakure K, Alexander A, Ajazuddin H, Dhongade DK, Tripathi (2016) Int J Biol Macromol 85:361–369

    Article  CAS  Google Scholar 

  8. Biswal DR, Singh RP (2004) Carbohydr Polym 57:379–387

    Article  CAS  Google Scholar 

  9. Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Carbohydr Polym 64:312–318

    Article  CAS  Google Scholar 

  10. El-Sayed S, Mahmoud K, Fatah A, Hassen A (2011) Physica B 406:4068–4076

    Article  CAS  Google Scholar 

  11. Islam MR, Beg MD, Gupta A (2013) Bioresources 8:3753–3770

    Article  Google Scholar 

  12. Zhang L, Zhang G, Lu J, Liang H (2013) Polym Plast Technol Eng 52:163–167

    Article  CAS  Google Scholar 

  13. Agarwal S, Sadegh H, Monajjemi M, Hamdy AS, Ali GAM, Memar AOH, Shahryari-Ghoshekandi R, Tyagi I, Gupta VK (2016) J Mol Liq 218:191–197

    Article  CAS  Google Scholar 

  14. El-Salmawi KM, Zaid MMA, Ibraheim SM, El-Naggar AM, Zahran AH (2001) J Appl Polym Sci 82:136–142

    Article  CAS  Google Scholar 

  15. Qin Y, Hu H, Luo A, Wang Y, Huang X, Song P (2006) J Appl Polym Sci 99:3110–3115

    Article  CAS  Google Scholar 

  16. Yu C, Li B (2008) Polym Compos 29:998–1005

    Article  CAS  Google Scholar 

  17. Bao Y, Ma J, Li N (2011) Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  18. Liang R, Yuan H, Xi G, Zhou Q (2009) Carbohydr Polym 77:181–187

    Article  CAS  Google Scholar 

  19. Bocourt M, Bada N, Acosta N, Bucio E, Peniche C (2014) Polym Int 63:1715–1723

    Article  CAS  Google Scholar 

  20. Pushpamalar V, Langford SJ, Ahmad M, Hashim K, Lim YY (2013) J Appl Polym Sci 128:1828–1833

    Article  CAS  Google Scholar 

  21. Yang Z, Yuan B, Huang X, Zhou J, Cai J, Yang H, Li A, Cheng R (2012) Water Res 46:107–114

    Article  CAS  Google Scholar 

  22. Liu L, Liu D, Wang M, Du G, Chen J (2007) Eur Polym J 43:2672–2681

    Article  CAS  Google Scholar 

  23. Bubb WA (2003) Concepts Magn Reson A 19:1–19

    Article  Google Scholar 

  24. Bugada DC, Rudin A (1984) Polymer 25:1759–1766

    Article  CAS  Google Scholar 

  25. Kaith B, Kalia S (2007) Int J Polym Anal Charact 12:401–412

    Article  CAS  Google Scholar 

  26. Gupta B, Büchi FN, Scherer GG, Chapiro A (1994) Polym Adv Technol 5:493–498

    Article  CAS  Google Scholar 

  27. Kaur I, Ray P (2008) Broader spectrum: examples, polymer grafting and crosslinking. Wiley, New York

    Google Scholar 

  28. Anjali T (2012) Carbohydr Polym 87:457–460

    Article  CAS  Google Scholar 

  29. Li W, Sun B, Wu P (2009) Carbohydr Polym 78:454–461

    Article  CAS  Google Scholar 

  30. Łojewska J, Miśkowiec P, Łojewski T, Proniewicz L (2005) Polym Degrad Stab 88:512–520

    Article  Google Scholar 

  31. Birla R (2014) Introduction to tissue engineering: applications and challenges. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Peters Nichols for running the sample for the solid-state NMR at Monash University Australia. Our valuable gratitude to Dr. Alan Yiu Wah Lee from School of Pharmacy, Monash University Malaysia for providing the brain cells. The study is funded by School of Science, Monash University Malaysia as Honours studentship fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janarthanan Pushpamalar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlan, N.A., Pushpamalar, J., Veeramachineni, A.K. et al. Smart Hydrogel of Carboxymethyl Cellulose Grafted Carboxymethyl Polyvinyl Alcohol and Properties Studied for Future Material Applications. J Polym Environ 26, 2061–2071 (2018). https://doi.org/10.1007/s10924-017-1105-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1105-3

Keywords

Navigation