Skip to main content
Log in

Cleaning of Wastewater from Total Coliform Using Chitosan–Grafted–Poly(2-methylaniline)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The preparation and characterization of a low-cost solid materials chitosan–graft–poly(2-methylaniline) as anti-coliform present in wastewater are confirmed by FTIR, TGA, XRD and SEM. The preparation is performed using ammonium persulphate as an oxidant. The data reveals that the grafting process enhances the efficiency of both chitosan and homo-poly(2-methylaniline) to remove coliform present in wastewater. The used wastewater contains 1600 colonies on testing total coliform using classical membrane filter techniques. The total coliform present in wastewater becomes zero by using 50 ppm of the graft, 100 ppm of chitosan and 1000 ppm of poly(2-methylaniline).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Metcalf E (2002) In: Tchobanoglous G, Burton FL, Stensel HD (eds) Wastewater engineering: treatment and reuse, 4th edn. McGraw-Hill, New York, pp 1217–1344

    Google Scholar 

  2. Koivunen J, Heinonen-Tanski H (2005) Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res 39:1519–1526. https://doi.org/10.1016/j.watres.2005.01.021

    Article  CAS  PubMed  Google Scholar 

  3. Taghipour F (2004) Ultraviolet and ionizing radiation for microorganism inactivation. Water Res 38:3940–3948. https://doi.org/10.1016/j.watres.2004.06.016

    Article  CAS  PubMed  Google Scholar 

  4. Xu P, Janex M-L, Savoye P, Cockx A, Lazarova V (2002) Wastewater disinfection by ozone: main parameters for process design. Water Res 36:1043–1055. https://doi.org/10.1016/S0043-1354(01)00298-6

    Article  CAS  PubMed  Google Scholar 

  5. Tyrrell SA, Rippey SR, Watkins WD (1995) Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone. Water Res 29:2483–2490. https://doi.org/10.1016/0043-1354(95)00103-R

    Article  CAS  Google Scholar 

  6. Giller S, Le Curieux F, Erb F, Marzin D (1997) Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis 12:321–328. https://doi.org/10.1093/mutage/12.5.321

    Article  CAS  PubMed  Google Scholar 

  7. Yang X, Shang C, Huang J-C (2005) DBP formation in breakpoint chlorination of wastewater. Water Res 39:4755–4767. https://doi.org/10.1016/j.watres.2005.08.033

    Article  CAS  PubMed  Google Scholar 

  8. Rojas-Valencia M, Orta-de-Velásquez M, Vaca-Mier M, Franco V (2004) Ozonation by-products issued from the destruction of microorganisms present in wastewaters treated for reuse. Water Sci Technol 50:187–193

    Article  CAS  PubMed  Google Scholar 

  9. Booth RA, Lester JN (1995) The potential formation of halogenated by-products during peracetic acid treatment of final sewage effluent. Water Res 29:1793–1801. https://doi.org/10.1016/0043-1354(94)00263-7

    Article  CAS  Google Scholar 

  10. Sabbahi S, Alouini Z, Ben Ayed L, Jemli M, Boudabbous A (2010) Inactivation of faecal bacteria in wastewater by methylene blue and visible light. Desalin Water Treat 20:209–219

    Article  CAS  Google Scholar 

  11. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–253

    Article  CAS  Google Scholar 

  12. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    Article  CAS  PubMed  Google Scholar 

  13. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  14. Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11:1699–1701

    Article  CAS  PubMed  Google Scholar 

  15. Xie W, Xu P, Wang W, Liu Q (2002) Preparation and antibacterial activity of a watersoluble chitosan derivative. Carbohydr Polym 50:35–40

    Article  CAS  Google Scholar 

  16. Wang H, Li W, Lu Y, Wang Z (1997) Studies on chitosan and poly(acrylic acid) interpolymer complex. I. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly(acrylic acid): chitosan semi interpenetrating polymer network. J Appl Polym Sci 65:1445–1450

    Article  CAS  Google Scholar 

  17. Igberase E, Osifo P, Ofomaja A (2014) The adsorption of copper (II) ions by polyaniline grafted chitosan beads from aqueous solution: equilibrium, kinetic and desorption studies. J Environ Chem Eng 2:362–369

    Article  CAS  Google Scholar 

  18. Sayyah SM, Abd El-Khalek AA, Bahgat AA, Abd El-Salam HM (2001) Kinetic studies of the chemical polymerization of substituted aniline in aqueous solutions and characterization of the polymer obtained part 2: 3-Methylaniline. Int J Polym Mater 49:25

    Article  CAS  Google Scholar 

  19. Sayyah SM, Bahgat AA, Abd El-Salam HM (2001) Kinetic studies of the chemical polymerization of substituted aniline in aqueous solutions and characterization of the polymer obtained part 1: 3-Chloroaniline. Polym Int 50:197

    Article  CAS  Google Scholar 

  20. Sayyah SM, Abd El-Salam HM (2003) Aqueous oxidative chemical polymerization of N-methylaniline in acid medium and characterization of the obtained polymer. Int J Polym Mater 52:1087

    Article  CAS  Google Scholar 

  21. Sayyah SM, Bahgat AA, Abd El-Salam HM (2002) Kinetic studies of the aqueous oxidative polymerization of 3-hydroxyaniline and characterization of the polymer obtained. Int J Polym Mater 51:291

    Article  CAS  Google Scholar 

  22. Sayyah SM, Abd El-Salam HM, Bahgat AA (2002) Aqueous oxidative chemical polymerization of 3-methoxyaniline and characterization of its polymer. Int J Polym Mater 51:915

    Article  CAS  Google Scholar 

  23. Sayyah SM, Abd El-Salam HM, Wahba YS (2005) Aqueous oxidative chemical polymerization of N-methylaniline in acid medium and characterization of oxidative chemical polymerization of p-sulphanilamide and characterization of the obtained polymer, the obtained polymer. Int J Polym Mater 54:1

    Google Scholar 

  24. Sayyah SM, Abd El-Salam HM, Azzam EMS (2006) Oxidative chemical polymerization of some 3-alkoxyaniline surfactants and characterization of the obtained polymer. Int J Polym Mater 55:1

    Google Scholar 

  25. Bagheri A, Nateghi M, Massoumi A (1998) Electrochemical synthesis of highly electroactive polydiphenylamine/polybenzidine copolymer in aqueous solutions. Synth Met 97:85

    Article  CAS  Google Scholar 

  26. Roy B, Gupta M, Bhowmik L, Ray J (1999) Studies on water soluble conducting polymer: aniline initiated polymerization of m-aminobenzene sulfonic acid. Synth Met 100:233

    Article  CAS  Google Scholar 

  27. Gabriel A, Gustavo M, Miras M, Barbero C (1998) A soluble and electroactive polyaniline obtained by coupling of 4-sulfobenzenediazonium ion and poly (N-methylaniline). Synth Met 97:223

    Article  Google Scholar 

  28. Bessbousse H, Rhlalou T, Verchère J-F, Lebrun L (2008) Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix. J Membr Sci 307:249–259

    Article  CAS  Google Scholar 

  29. Jadhav HV (1992) Element of environmental chemistry. Himalaya Publishing Home, Delhi

    Google Scholar 

  30. Sudha PN (2010) In: Kim S-K (ed) Chitin, chitosan, oligosaccharides and their derivatives. CRC Press, New York, pp 561–585

    Chapter  Google Scholar 

  31. Abd El Salam HM, Kamal EHM, Ibrahim MS: (2016) Synthesis and characterization of chitosan-grafted-poly(2-hydroxyaniline) microstructures for water decontamination. J Polym Environ. https://doi.org/10.1007/s10924-016-0847

    Article  Google Scholar 

  32. Abd El_Salam HM, Askalany HG (2016) Synthesis and characterization of crystalline poly(N-(2-hydroxyethyl) aniline microspheres. High Perform Polym 29:227–236

    Article  CAS  Google Scholar 

  33. Silverstein RM, Bassler CG, Morill TC (1974) Spectroscopic identification of organic compounds. Wiley, New York

    Google Scholar 

  34. Gerba PC (2000) Indicator organisms. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic Press, San Diego, pp 491–503

    Google Scholar 

  35. American Public Health Association (APHA) (2001) Revisions to standard methods for the examination of water and wastewater (supplement). APHA, Washington, DC

    Google Scholar 

  36. United States Environmental Protection Agency (USEPA) (2006) Hazard analysis critical control point (HACCP) strategies for distribution system monitoring, hazard assessment and control. HDR Inc., Washington, DC

    Google Scholar 

  37. Brözel VS, Cloete TE (1991) Effect of storage time and temperature on the aerobic plate count and on the community structure of two water samples. Water SA 17:289–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Abd El-Salam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Salam, H.M., Kamal, E.H.M. & Ibrahim, M.S. Cleaning of Wastewater from Total Coliform Using Chitosan–Grafted–Poly(2-methylaniline). J Polym Environ 26, 3412–3421 (2018). https://doi.org/10.1007/s10924-018-1225-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1225-4

Keywords

Navigation