Skip to main content
Log in

Low Energy Conformations for S100 Binding Peptide from the Negative Regulatory Domain of p53

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

We have computed the low energy conformations of the negative regulatory domain of p53, residues 374–388 using Empirical Conformational Energies of Peptides Program including solvation and computed the statistical weights of distinct conformational states. We find that there are two high probability conformations, one an α-helix from Lys 374–Lys 381, followed by another helical structure involving Lys 382–Glu 388 (statistical weight of 0.48) and an all-α-helix for the entire sequence (statistical weight of 0.23). Both structure are superimposable on the NMR structure of this sequence bound to the S100 protein. The global minimum structure (statistical weight of 0.014) is a beta structure from Gly 374–Arg 379 followed by an α-helix from His 380–Glu 388. Based on these results, we propose a possible strategy for enhancement of p53 anti-tumor activity in cancer cells. Since the structure of this sequence bound to the sirtuin protein, Sir2, is a β-sheet, we further propose that the global minimum may be an intermediate on the α-β structure transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NRD:

Negative regulatory domain of p53

RMS:

Root mean square deviation

ECEPP:

Empirical Conformational Energies of Peptides Program

NOE:

Nuclear overhauser effect

References

  1. Fernandez-Fernandez MR, Sot B (2011) The relevance of protein–protein interactions for p53 function. Protein Eng Des Sel 24:41–51

    Article  CAS  Google Scholar 

  2. Stavridi ES, Huyen Y, Sheston EA, Hazelonetis TD (2005) In: Zambetti (ed) The p53 tumor suppressor and cancer. Springer, New York

    Google Scholar 

  3. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:334–335

    Article  Google Scholar 

  4. Jeffrey PD, Gorina S, Paveltich NP (1994) Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502

    Article  Google Scholar 

  5. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 174:948–953

    Article  Google Scholar 

  6. Rosal R, Pincus MR, Brandt-Rauf PW, Fine RL, Michl J, Wang H (2004) NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Biochemistry 43:1854–1861

    Article  CAS  Google Scholar 

  7. Rustandi RR, Baldisseri DM, Weber DJ (2000) Structure of the negative regulatory domain of p53 bound to S100B (ββ). Nat Struct Biol 7:570–574

    Article  CAS  Google Scholar 

  8. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C (2002) Structure of a Sir 2 enzyme bound to an acetylated p53 peptide. Mol Cell 10:523–536

    Article  CAS  Google Scholar 

  9. Uversky V, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases. Introducing the D2 concept. Ann Rev Biophys 37:215–246

    Article  CAS  Google Scholar 

  10. Pincus M (1988) The chain build-up procedure in computing the structures of biologically active polypeptides and proteins. Int J Quantum Chem Quantum Biol Symp 15:209–220

    Article  CAS  Google Scholar 

  11. Scheraga HA, Liwo A, Oldziej S, Czaplewski A, Pillardy J, Ripoll DR, Vila JA, Kazmierkiewicz R, Saunders JA, Arnautova YA, Jagielska A, Chinchio M, Nanias M (2004) The protein folding problem: global optimization of the force fields. Front Biosci 9:3296–3323

    Article  CAS  Google Scholar 

  12. Hodes ZI, Nemethy G, Scheraga HA (1979) Model for the conformational analysis of hydrated peptides. Effect of hydration on the conformational stability of the terminally blocked residues of the 20 naturally occurring amino acids. Biopolymers 18:1565–1610

    Article  CAS  Google Scholar 

  13. Pincus MR, Woo J, Monaco R, Lubowsky J, Avitable M, Carty RP (2014) The low-energy conformations of gonadotropin-releasing hormone in aqueous solution. Protein J 33:565–574

    Article  CAS  Google Scholar 

  14. Pincus MR, Woo J, Monaco R, Lubowski J, Carty RP (2014) Low energy conformations for gonadotropin-releasing hormone with d- and l-amino acid substitutions for Gly 6: possible receptor-bound conformations. Protein J 33:575–587

    Article  CAS  Google Scholar 

  15. Pincus MR, Carty RP, Harding M, Epstein W (2012) Calculation of the three-dimensional structures of two antigenic sequences, Pro-Pro-Pro-Pro-Asn-Pro-Asn-Asp-Pro and Pro-Pro-Pro-Pro-Asn-Pro-Asn-Asp-Pro-Pro-Pro, of the circumsporozoite protein from a malaria-causing plasmodium. Protein J 32:58–67

    Article  Google Scholar 

  16. Gibson K, Chin S, Pincus MR, Clementi E, Scheraga HA (1986) Parallelism in conformational energy calculations on proteins: partial structure of interferon. In: Dupuis M (ed) Montreal symposium on supercomputer simulation in chemistry. Lecture notes in chemistry, vol 44. Springer, Berlin, pp 198–213

    Chapter  Google Scholar 

  17. Pincus MR, Brandt-Rauf PW, Gibson K, Carty RP, Lubowsky J, Avitable M, Scheraga HA (1987) Conformational effects of substituting amino acids for Gln 61 on the central transforming region of the P21 proteins. Proc Natl Acad Sci USA, 89:8375–8379

    Article  Google Scholar 

  18. Zimmerman SS, Scheraga HA (1977) Influence of local interactions on protein structure. I. Conformational energy studies of N-acetyl-N’-methylamides of Pro-X and X-Pro dipeptides. Biopolymers 16:811–843

    Article  CAS  Google Scholar 

  19. Chary KVR, Srivastava S, Hosur RV, Roy KB, Govil G (1986) Molecular conformation of gonadoliberin using two-dimensional NMR spectoscopy. Eur J Biochem 158:323–352

    Article  CAS  Google Scholar 

  20. Pappa EV, Zompra AA, Diamantopoulou Z, Spyranti Z, Pairas G, Lamari FN, Katsoris P, Spyroulias GA, Cordopatis P (2012) Structure-activity studies of IGnRHIII through rational amino acid substitution and NMR conformational studies. Biopolymers 98:525–534

    Article  CAS  Google Scholar 

  21. Bheda P, Jing H, Wolberger C, Lin H (2016) The substrate specificity of sirtuins. Annu Rev Biochem 85:405–429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Pincus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carty, R.P., Lin, B., Fridman, D. et al. Low Energy Conformations for S100 Binding Peptide from the Negative Regulatory Domain of p53. Protein J 37, 510–517 (2018). https://doi.org/10.1007/s10930-018-9799-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9799-1

Keywords

Navigation