Skip to main content

Advertisement

Log in

Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Authigenic vivianite and siderite microconcretions were found, respectively, in hemipelagic and deltaic facies of 600-m-long BDP-98 sediment section from Lake Baikal. Textural investigations of these microconcretions show that they are typically <1 mm in size, irregular in shape and composed of aggregated crystallites. Dissimilar orientation of vivianite and siderite crystallites suggests formation at different depths in the sediment; up to tens of centimeters for vivianite and tens of meters for siderite. Chemical analyses of both the vivianite and the siderite indicate cation composition characterized by minor amounts of Mn, Ca and Mn apart from the dominating Fe. Rather limited and distinctive carbon isotopic composition of the siderite, with δ 13CVPDB values between about +13 and +16‰, implies formation of the mineral in the methanogenic zone of diagenesis. Isotopic composition of oxygen in the siderite (δ 18OVPDB values between about −10 and -11‰ ) is consistent with crystallization temperature at about 10–30°C and water δ 18OSMOW values between about −10 and -16‰ . The distribution of the authigenic minerals in the section suggests changes in both sedimentary facies and climate, where vivianite formation was controlled by hemipelagic depositional conditions during the Pliocene and Quaternary, whereas siderite reflects impact of deltaic conditions during the Miocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Aasm IS, Taylor BE, South B (1990) Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem Geol (Isot Geosci Sect) 80:119–125

    Article  CAS  Google Scholar 

  • Antipin et al. (BDP-98 Members) (2001) The new BDP-98 600-m drill core from Lake Baikal: a key late Cenozoic sedimentary section in continental Asia. Quatern Int 80–81:19–36

    Google Scholar 

  • Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over southeast Asia. J Geophys Res 103:28,721–28,742

    Article  Google Scholar 

  • Behn MD, Lin J, Zuber MT (2002) A continuum mechanics model for normal faulting using a strain-rate softening rheology: implications for thermal and rheological controls on continental and oceanic rifting. Earth Planet Sci Lett 6321:1–16

    Google Scholar 

  • Belova VA (1995) Vegetation and climate of Late Cenozoic in the south of eastern Siberia. Nauka, Novosibirsk, pp 176[in Russian]

    Google Scholar 

  • Bukharov AA (2001) Baikal in numbers (short reference book). Siberian Brunch of Russian Academy of Sciences, Irkutsk Scientific Center, Baikal Museum, p 72

    Google Scholar 

  • Carothers WW, Adami LH, Rosenbauer RJ (1988) Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite. Geochim Cosmochim Acta 52:2445–2450

    Article  CAS  Google Scholar 

  • Chow N, Morad S, Al-Aasm IS (2000) Origin of authigenic Mn–Fe carbonates and pore-water evolution in marine sediments: evidence from Cenozoic strata of the Arctic Ocean and Norwegian–Greenland Sea (ODP Leg 151). J Sed Res 70:682–699

    CAS  Google Scholar 

  • Colman SM, Karabanov EB, Nelson CH III (2003) Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring. J Sed Res 73:941–956

    Google Scholar 

  • Curtis CD, Coleman ML, Love LG (1986) Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochim Cosmochim Acta 50:2321–2334

    Article  CAS  Google Scholar 

  • Deike RG, Granina L, Callender E, McGee JJ (1997) Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate. Mar Geol 139:21–46

    Article  CAS  Google Scholar 

  • Edwards TWD, Birks SJ, Gibson JJ (2002) Isotope tracers in global water and climate studies of the past and present. International Conference on the Study of Environmental Change Using Isotope Techniques, International Atomic Energy Agency, Vienna, April 2001, IAEA-CN-80/66

  • Fisher QJ, Raiswell R, Marshall JD (1998) Siderite concretions from nonmarine shales (Westphalian A) of the Pennines, England; controls on their growth and composition. J Sed Res 68:1034–1045

    CAS  Google Scholar 

  • Granina L, Müller B, Wehrli B (2004) Origin and dynamics of Fe and Mn sedimentary layers in Lake Baikal. Chem Geol 205:55–72

    Article  CAS  Google Scholar 

  • Gächter R, Müller B (2003) Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol Oceanogr 48:929–933

    Article  Google Scholar 

  • Hounslow MW (2001) The crystallographic fabric and texture of siderite in concretions: implications for siderite nucleation and growth processes. Sedimentology 48:533–557

    Article  CAS  Google Scholar 

  • Hupfer M, Fischer P, Friese K (1998) Phosphorus retention mechanisms in the sediment of an eutrophic mining lake. Water Air Soil Poll 108:341–352

    Article  CAS  Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213

    Article  CAS  Google Scholar 

  • Kuzmin MI, Bychinskii VA, Geletyi VF (2000) Paragenesis of iron authigenic minerals in Lake Baikal bottom sediments (physico-chemical model of geochemical processes in the system of bottom sediments-water). In: Fundamental problems of water and water resources at the beginning of Third Millennium. Proceedings Int Sci Conf, 3–7 September 2000. NTL Publisher, Tomsk, pp 425–427

  • Last WM, De Deckker P (1990) Modern and Holocene carbonate sedimentology of two saline volcanic maar lakes, southern Australia. Sedimentology 37:967–981

    Article  Google Scholar 

  • Lim DI, Jung HS, Yang SY, Yoo HS (2004) Sequential growth of early diagenetic freshwater siderites in the Holocene coastal deposits, Korea. Sed Geol 169:107–120

    Article  CAS  Google Scholar 

  • Manning PG, Murphy TP, Prepas EE (1991) Intensive formation of vivianite in the bottom sediments of mesotrophic Narrow Lake, Alberta. Can Mineral 29:77–85

    CAS  Google Scholar 

  • Manning PG, Prepas EE, Serediak MS (1999) Pyrite and vivianite intervals in the bottom sediments of eutrophic Baptiste Lake, Alberta, Canada. Can Mineral 37:593–601

    CAS  Google Scholar 

  • Mats VD, Khlystov OM, De Batist M, Ceramicola S, Lomonosova TK, Klimansky A (2000) Evolution of the Academician Ridge Accommodation Zone in the central part of the Baikal Rift, from high-resolution reflection seismic profiling and geological field investigations. Int J Earth Sci 89:229–250

    Article  Google Scholar 

  • Morad S (1998) Carbonate cementation in sandstones: distribution patterns and geochemical evolution. In: Morad S (ed) Carbonate cementation in sandstones. Blackwell Science, Spec Publs Int Ass Sediment 26, pp 1–26

  • Mortimer RJG, Coleman ML (1997) Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochim Cosmochim Acta 61:1705–1711

    Article  CAS  Google Scholar 

  • Mozley PS, Carothers WW (1992) Elemental and isotopic composition of siderite in the Kuparuk Formation, Alaska; effect of microbial activity and water sediment interaction on early pore-water chemistry. J␣Sedimen Petrol 62:681–692

    CAS  Google Scholar 

  • Murphy T, Lawson A, Kumagai M, Nalewajko C (2001) Release of phosphorous from sediments in Lake Biwa. Limnology 2:119–128

    Article  CAS  Google Scholar 

  • Nriagu JO, Dell CI (1974) Diagenetic Formation of Iron Phosphates in Recent Lake Sediments. Amer Miner 59:934–946

    CAS  Google Scholar 

  • Olsson S, Regnell J, Persson A, Sandgren P (1997) Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden. J Paleolimnol 17:275–294

    Article  Google Scholar 

  • Raiswell R, Fisher QJ (2000) Mudrock-hosted carbonate concretions; a review of growth mechanisms and their influence on chemical and isotopic composition. J␣Geol Soc London 157:239–251

    Article  CAS  Google Scholar 

  • Sakai T, Minoura K, Soma M, Tani Y, Tanaka A, Nara F, Itoh N, Kawai T (2005) Influence of climate fluctuation on clay formation in the Baikal drainage basin. J␣Paleolimnol 33:105–121

    Article  Google Scholar 

  • Sapota T, Aldahan A, Possnert G (2006) Be isotopes with textural and mineralogical data of sediment from Lake Baikal (Siberia). N Jb Geol Paläont (in press)

  • Sapota T, Aldahan A, Possnert G, Peck J, King J, Prokopenko A, Kuzmin M (2004) A late Cenozoic Earth’s crust and climate dynamics record from Lake Baikal. J Paleolimnol 32:341–349

    Article  Google Scholar 

  • Seal RR II, Shanks WC III (1998) Oxygen and hydrogen isotope systematics of Lake Baikal, Siberia; implications for paleoclimate studies. Limnol Oceanogr 43:1251–1261

    Article  CAS  Google Scholar 

  • Wilkinson M, Haszeldine RS, Fallick AE, Osborne MJ (2000) Siderite zonation within the Brent Group: microbial influence or aquifer flow? Clay Miner 35:107–117

    Article  CAS  Google Scholar 

  • Xiouzhu Z, Yunfei W, Huaiyan L (1996) Authigenic mineralogy, depositional environments and evolution of fault-bounded lakes of the Yunnan Plateau, south-western China. Sedimentology 43:367–380

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Swedish Research Council (VR). Thanks are expressed to Sadoon Morad for constructive comments during preparation of the manuscript. ISA acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC). Samples were kindly provided by John King and John Peck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Sapota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapota, T., Aldahan, A. & Al-Aasm, I.S. Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. J Paleolimnol 36, 245–257 (2006). https://doi.org/10.1007/s10933-006-9005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-006-9005-x

Keywords

Navigation