Skip to main content
Log in

Algebraic representation of mappings between submodule lattices

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We show that under certain weak conditions on the module R M, every mapping

$$ f:\mathfrak{L}\left( {_R M} \right) \to \mathfrak{L}\left( {_S N} \right) $$

between the submodule lattices which preserves arbitrary joins and “disjointness” has a unique representation of the form f(u) = 〈h[ S B R × R U]〉 for all u

$$ \mathfrak{L}\left( {_R M} \right) $$

, where S B R is some bimodule and h is an R-balanced mapping. Furthermore, f is a lattice homomorphism if and only if B R is flat and the induced S-module homomorphism

$$ \bar h:_S B \otimes _R M \to _S N $$

is monic. If S N also satisfies the same weak conditions, then f is a lattice isomorphism if and only if B R is a finitely generated projective generator, S ≅ End(B R ) canonically, and

$$ \bar h:_S B \otimes _R M \to _S N $$

is an S-module isomorphism, i.e., every lattice isomorphism is induced by a Morita equivalence between R and S and a module isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Anderson and K. P. Fuller, Rings and Categories of Modules, Springer-Verlag, New York (1973).

    Google Scholar 

  2. E. Artin, Geometric Algebra, Interscience, New York (1957).

    MATH  Google Scholar 

  3. R. Baer, Linear Algebra and Projective Geometry, Academic Press, New York (1952).

    MATH  Google Scholar 

  4. C. Bartolone and F. Bartolozzi, “Topics in geometric algebra over rings,” in: Rings and Geometry, Istanbul, 353–389, (1984), NATO Adv. Sci. Inst., Ser. C, Math. Phys. Sci., 160, Reidel, Dordrecht (1985).

    Google Scholar 

  5. C. Bartolone and F. Di Franco, “A remark on the projectivities of the projective line over a commutative ring,” Math. Z., 169, No. 1, 23–29 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Bass, Algebraic K-Theory, Benjamin, New York (1958).

    Google Scholar 

  7. N. Bourbaki, Commutative Algebra. Chaps. 1–2. Flat Modules, Localization, Hermann, Paris (1961).

    Google Scholar 

  8. U. Brehm, Untermodulverbände torsionsfreier Moduln, Dissertation, Freinburg (1983/84).

  9. U. Brehm, “Representation of homomorphisms between submodule lattices,” Res. Math., 12, 62–70 (1987).

    MATH  MathSciNet  Google Scholar 

  10. U. Brehm, M. Greferath, and S. E. Schmidt, “Projective geometry on modular lattices,” in: Handbook of Incidence Geometry (F. Buekenhout, Ed.), Amsterdam, North-Holland (1995), pp. 1115–1142.

    Chapter  Google Scholar 

  11. F. Buekenhout, Ed., Handbook of Incidence Geometry. Buildings and Foundations, North-Holland, Amsterdam (1995).

    MATH  Google Scholar 

  12. F. Buekenhout and P. Cameron, “Projective and affine geometry over division rings,” in: Handbook of Incidence Geometry, North-Holland, Amsterdam (1995), pp. 27–62.

    Chapter  Google Scholar 

  13. V. P. Camillo, “Inducing lattice maps by semilinear isomorphisms,” Rocky Mount. J. Math, 14, No. 2, 475–486 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  14. D. S. Carter and A. Vogt, “Collinearity-preserving functions between Desarguesian planes,” Proc. Nat. Acad. Sci. U.S.A., 77, No. 7, 3756–3757 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  15. P. M. Cohn, Morita Equivalence and Duality, Queen Mary College, London (1966).

    Google Scholar 

  16. P. M. Cohn, Skew Field Constructions, Cambridge Univ. Press (1997).

  17. J. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin-Göttingen-Heidelberg (1955).

    MATH  Google Scholar 

  18. J. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin-New York (1971).

    MATH  Google Scholar 

  19. K. Faltings, “Modulare Verbände mit Punktsystem,” Geom. Dedic., 4, 105–137 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  20. C.-A. Faure, “An elementary proof of the fundamental theorem of projective geometry,” Geom. Dedic., 90, 145–151 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  21. C.-A. Faure, “Morphisms of projective spaces over rings,” Adv. Geom., 4, No. 1, 19–31 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  22. C.-A. Faure and A. Frölicher, “Categorical aspects in projective geometry,” Appl. Categ. Struct., 6, No. 1, 87–103 (1998).

    Article  MATH  Google Scholar 

  23. C.-A. Faure and A. Frölicher, Eds. Modern Projective Geometry, Math. Appl., 51, Kluwer Academic, Dordrecht (2000).

    MATH  Google Scholar 

  24. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).

    MATH  Google Scholar 

  25. A. J. Hahn, D. G. James, and B. Weisfeiler, “Homomorphisms of algebraic and classical groups: a survey,” in: Quadratic and Hermitian forms, (Hamilton, Ont.), 249–296 (1983). CMS Conf. Proc., 4, Amer. Math. Soc., Providence, Rhode Island (1984).

    Google Scholar 

  26. A. J. Hahn, D. G. James, and Z. X. Wan, “Classical groups and related topics,” in: Proc. China-United States Conference in honor of Luo Geng Hua held at Tsinghua University, Beijing, May, 18–23 (1987). Contemp. Math., 82, Amer. Math. Soc., Providence, Rhode Island (1989).

    Google Scholar 

  27. A. J. Hahn and O. T. O’Meara, The Classical Groups and K-Theory, Springer-Verlag, Berlin (1989).

    MATH  Google Scholar 

  28. H. Havlicek, “A generalization of Brauner’s theorem on linear mappings,” Mitt. Math. Semin. Gieen, 215, 27–41 (1994).

    MATH  MathSciNet  Google Scholar 

  29. H. Havlicek, “Weak linear mappings. A survey,” in: Geometrie-Tagung “107 Jahre Drehfluchtprinzip,” (O. Röschel et al. Eds.), Vorau, Österreich, 1. Juni–6. Juni 1997, Tagungsband. Vorau: TU Graz, 76–85 (1999).

    Google Scholar 

  30. G. Hutchinson, “On classes of lattices representable by modules,” Proc. Univ. of Houston Lattice Theory Conf., Houston, 1973.

  31. D. James, W. Waterhouse, and B. Weisfeiler, “Abstract homomorphisms of algebraic groups: Problems and bibliography,” Commun. Algebra, 9, No. 1, 95–114 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Kaya, P. Plaumann, and K. Strambach, “Rings and geometry,” in: Proc. NATO Adv. Stud. Inst. held in Istanbul, September 2–14, 1984, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 160, Reidel, Dordrecht (1985).

    Google Scholar 

  33. W. Klingenberg, “Projektive Geometrien mit Homomorphismus,” Math. Ann., 132, 180–200 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  34. A. A. Lashkhi, “Harmonic mappings and collineations of modules,” Soobshch. Akad. Nauk Gruz. SSR, 133, No. 3, 497–500 (1989).

    MATH  MathSciNet  Google Scholar 

  35. A. A. Lashkhi, “Harmonic mappings of modules,” Mat. Zametki, 47, No. 1, 161–163 (1990).

    MATH  MathSciNet  Google Scholar 

  36. A. Lashkhi, “Harmonic maps over rings,” Georgian Math. J., 4, No. 1, 41–64 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Lashkhi and D. Chkhatarashvili, “On the fundamental theorem of affine geometry over a ring,” Bull. Georgian Acad. Sci., 159, No. 1, 17–19 (1999).

    MATH  MathSciNet  Google Scholar 

  38. A. Lashkhi and T. Kvirikashvili, “Perspective maps of modules,” Bull. Georgian Acad. Sci., 155, No. 3, 328–330 (1997).

    MATH  MathSciNet  Google Scholar 

  39. A. Lashkhi and T. Kvirikashvili, “Perspective maps of modules,” Mat. Zametki, 4, 946–947 (2005).

    MathSciNet  Google Scholar 

  40. A. Lashkhi and T. Kvirikashvili, “Affine geometry of modules over a ring with an invariant basis number,” J. Math. Sci. (to appear).

  41. F. Machala, “Bemerkungen zu einem Satz von L. A. Skornjakov über projektive Abbildung von Moduln,” Mat. Časopis Sloven. Akad. Vied., 24, No. 4, 301–306 (1974).

    MATH  MathSciNet  Google Scholar 

  42. V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaev, “Rings of endomorphisms of modules and lattices of submodules,” Algebra. Topology. Geometry, 21, 183–254, Itogi Nauki Tekhn., Akad. Nauk SSSR, Moscow (1983).

    Google Scholar 

  43. B. R. McDonald, “Geometric algebra over local rings,” Pure Appl. Math., 36, Marcel Dekker, New York-Basel (1976).

    Google Scholar 

  44. B. R. McDonald, Linear Algebra over Commutative Rings, Marcel Dekker, New York (1984).

    MATH  Google Scholar 

  45. K. Morita, “Duality of modules and its application to the theory of rings with minimum condition,” Sci. Rep. Tokyo Kyoiku Diagaku, A6, 85–142 (1958).

    Google Scholar 

  46. J. Von Neumann, Continuous Geometry, Princeton Univ. Press (1960).

  47. M. Ojanguren and R. Sridharan, “A note on the fundamental theorem of projective geometry,” Comment. Math. Helv., 44, 310–315 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  48. O. T. O’Meara, “Lectures on linear groups,” in: Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 22, Amer. Math. Soc. Providence, Rhode Island (1974).

    Google Scholar 

  49. P. Plaumann and K. Strambach, “Geometry—von Staudt’s point of view,” in: Proc. NATO Adv. Stud. Inst. held at Bad Windsheim, West Germany, July 21–August 1, 1980, NATO Adv. Stud. Inst. Ser. C, Math. Phys. Sci., 70, Reidel, Dordrecht-Boston-London (1981).

    Google Scholar 

  50. S. E. Schmidt, Grundlegungen zu einer allgemeinen affinen Geometrie, Birkhäuser, Basel (1995).

    MATH  Google Scholar 

  51. S. E. Schmidt and S. Weller, “Fundamentalsatz fur affine Raume über Moduln,” Res. Math., 30, Nos. 1–2, 151–159 (1996).

    MATH  MathSciNet  Google Scholar 

  52. B. Sarath and K. Varadarajan, “Fundamental theorem of projective geometry,” Commun. Algebra 12, No. 8, 937–952 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  53. L. A. Skornyakov, “Projective mapping of modules,” Izv. Akad Nauk USSR, Ser. Math., 24, 511–520 (1960).

    MATH  MathSciNet  Google Scholar 

  54. L. A. Skornyakov, Complemented Modular Lattices and Regular Rings, Oliver & and Boyd, Edinburgh (1964).

    MATH  Google Scholar 

  55. W. Stephenson, Characterizations of Rings and Modules by Lattices, Ph.D. Thesis, Univ. of London (1967).

  56. W. Stephenson, “Lattice isomorphisms between modules, 1. Endomorphism rings,” J. London Math. Soc. 2, No. 1, 177–183 (1960).

    MathSciNet  Google Scholar 

  57. G. Törner and F. D. Veldkamp, “Literature on geometry over rings,” J. Geom., 42, Nos. 1–2, 180–200 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  58. F. D. Veldkamp, “Geometry over rings,” in: Handbook of Incidence Geometry (F. Buekenhout, Ed.), North-Holland, Amsterdam (1995), pp. 1033–1084.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Brehm.

Additional information

__________

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 46, Algebra, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brehm, U. Algebraic representation of mappings between submodule lattices. J Math Sci 153, 454–480 (2008). https://doi.org/10.1007/s10958-008-9131-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9131-2

Keywords

Navigation