Skip to main content
Log in

The Geometry of Projective, Injective, and Flat Banach Modules

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we prove general facts on metrically and topologically projective, injective, and flat Banach modules. We prove theorems pointing to the close connection between metric, topological Banach homology and the geometry of Banach spaces. For example, in geometric terms we give a complete description of projective, injective, and flat annihilator modules. We also show that for an algebra with the geometric structure of an - or -space all its homologically trivial modules possess the Dunford–Pettis property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Grad. Texts Math., Vol. 233, Springer (2006).

  2. D. P. Blecher and N. Ozawa, “Real positivity and approximate identities in Banach algebras,” Pacific J. Math., 277, No. 1, 1–59 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. P. Blecher and C. J. Read, “Operator algebras with contractive approximate identities,” J. Funct. Anal., 261, No. 1, 188–217 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, New Classes of -Spaces, Springer (1981).

  5. J. Bourgain, “On the Dunford–Pettis property,” Proc. Am. Math. Soc., 81, No. 2, 265–272 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. G. Dales and M. E. Polyakov, “Homological properties of modules over group algebras,” Proc. London Math. Soc., 89, No. 2, 390–426 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud., Vol. 176, Elsevier (1992).

  8. M. Fabian and P. Habala, Banach Space Theory, Springer (2011).

  9. M. González and J. Gutiérrez, “The Dunford–Pettis property on tensor products,” Math. Proc. Cambridge Philos. Soc., 131, No. 1, 185–192 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. W. M. Graven, “Injective and projective Banach modules,” Indag. Math., 82, No. 1, 253–272 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Grothendieck, “Une caractérisation vectorielle-métrique des espaces L 1,” Can. J. Math., 7, 552–561 (1955).

    Article  MATH  Google Scholar 

  12. A. Ya. Helemskii, Banach and Polynormed Algebras: General Theory, Representations, Homology [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  13. A. Y. Helemskii, The Homology of Banach and Topological Algebras, Math. Its Appl., Vol. 41, Springer (1989)

  14. A. Ya. Helemskii, “Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras,” Stud. Math., 206, No. 2, 135–160 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Ya. Helemskii, “Metric freeness and projectivity for classical and quantum normed modules,” Sb. Math., 204, No. 7, 1056–1083 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Ya. Helemskii, Lectures and Exercises on Functional Analysis, Transl. Math. Monogr., Vol. 233, Amer. Math. Soc., 2006.

  17. W. B. Johnson and J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 2, Elsevier (2001).

  18. G. Köthe, “Hebbare lokalkonvexe Räume,” Math. Ann., 165, No. 3, 181–195 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer (1974).

  20. J. Lindenstrauss and A. Pelczynski, “Absolutely summing operators in -spaces and their applications,” Stud. Math., 29, No. 3, 275–326 (1968).

  21. N. T. Nemesh, “Metrically and topologically projective ideals of Banach algebras,” Math. Notes, 99, No. 4, 524–533 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. J.-P. Pier, Amenable Locally Compact Groups, Wiley–Interscience (1984).

  23. G. Racher, “Injective modules and amenable groups,” Comment. Math. Helv., 88, No. 4, 1023–1031 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Ramsden, Homological Properties of Semigroup Algebras, thesis, University of Leeds (2009).

  25. S. M. Shteiner, “Topological freedom for classical and quantum normed modules,” Vestn. SamGU. Estestvennonauchn. ser., No. 9/1 (110), 49–57 (2013).

  26. C. P. Stegall and J. R. Retherford, “Fully nuclear and completely nuclear operators with applications to - and -spaces,” Trans. Am. Math. Soc., 163, 457–492 (1972).

  27. M. C. White, “Injective modules for uniform algebras,” Proc. London Math. Soc., 3, No. 1, 155–184 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Nemesh.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 21, No. 3, pp. 161–184, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemesh, N.T. The Geometry of Projective, Injective, and Flat Banach Modules. J Math Sci 237, 445–459 (2019). https://doi.org/10.1007/s10958-019-04170-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04170-8

Navigation