Skip to main content

Advertisement

Log in

HNTs/SiO2 dual-network aerogels with improved strength and thermal insulation

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Dual-network aerogels (HPSA) with improved mechanical property and thermal insulation were prepared by vacuum impregnation of HNTs/PVA aerogels (the first network aerogel, HPA) in tetraethoxysilane (TEOS). Scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, and N2 adsorption–desorption analysis were used to study micromorphology and microstructure of HPSA, while compression tests and thermal conductivity tests were used to investigate related properties. The results showed that the dual-network frame was successfully constructed, this enabled HPSA to display enhanced compressive properties with increased HNTs content. The addition of silica sol improved the mesoporous characteristics including specific surface area and pore volume and also reduced the thermal conductivities. The first network made it possible for HPSA to possess good mechanical property, while SiO2 aerogel allowed HPSA greater thermal insulation. The obtained aerogel samples exhibited a high compressive strength (i.e., 1.36 MPa) and a low thermal conductivity (i.e., 0.022 W/(m K)). HNTs/SiO2 dual-network aerogels with improved strength and thermal insulation could show great potential in a wide variety of applications.

Highlights

  • Novel HNTs/SiO2 dual-network aerogels were successfully prepared through cheap raw materials.

  • The effects of HNTs content on the compressive strength and SiO2 content on the thermal conductivity of aerogels were studied.

  • The effects of dual-network frame on compressive strength and thermal conduction of aerogels were analyzed in detail by models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kistler S (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  CAS  Google Scholar 

  2. Yuan B, Zhang JM, Mi QY, Yu J, Song R, Zhang J (2017) Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ sol-gel process. ACS Sustain Chem Eng 5:11117–11123

    Article  CAS  Google Scholar 

  3. Amin S, Mohammad RS (2014) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234

    Google Scholar 

  4. Wei GS, Zhang YD, Xu C, Du XZ, Yang YP (2017) A thermal conductivity study of double-pore distributed powdered silica aerogels. Int J Heat Mass Transfer 108:1297–1304

    Article  CAS  Google Scholar 

  5. Hayase G, Kugimiya K, Ogawa M, Kodera Y, Kanamori K, Nakanishi K (2014) The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. J Mater Chem A 2:6525–6531

    Article  CAS  Google Scholar 

  6. Zu GQ, Shen J, Zou LP, Wang WQ, Lian Y, Zhang ZH, Du A (2013) Nanoengineering super heat-resistant, strong alumina aerogels. Chem Mater 25:4757–4764

    Article  CAS  Google Scholar 

  7. Katsoulidis AP, He JQ, Katsoulidis MG (2012) Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of iodine vapors. Chem Mater 24:1937–1943

    Article  CAS  Google Scholar 

  8. Schiffres SN, Kim KH, Hu L, Mcgaughey AJH, Islam MF, Malen JA (2012) Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels. Adv Funct Mater 22:5251–5258

    Article  CAS  Google Scholar 

  9. Shang K, Yang JC, Cao ZJ, Liao W, Wang YZ, Schiraldi DA (2017) Novel polymer aerogel toward high dimensional stability, mechanical property, and fire safety. ACS Appl Mater Interfaces 9:22985–22993

    Article  CAS  Google Scholar 

  10. Fan Y, Ma W, Han D, Gan S, Dong X, Niu L (2015) Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv Mater 27:3767–3773

    Article  CAS  Google Scholar 

  11. Li J, Stling M (2013) Prevention of graphene restacking for performance boost of supercapacitors—a review. Crystals 3:163

    Article  CAS  Google Scholar 

  12. Pisal AA, Rao AV (2016) Development of hydrophobic and optically transparent monolithic silica aerogels for window panel applications. J Porous Mater 24:1–11

    Google Scholar 

  13. Schwertfeger F, Hüsing N, Schubert U (1994) Influence of the nature of organic groups on the properties of organically modified silica aerogels. J Sol-Gel Sci Technol 2:103–108

    Article  CAS  Google Scholar 

  14. Hüsing N, Schubert U (1997) Organofunctional silica aerogels. J Sol-Gel Sci Technol 8:807–812

    Google Scholar 

  15. Li CC, Cheng XD, Li Z, Pan YL, Huang YJ, Gong LL (2017) Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J Non-Cryst Solids 457:52–59

    Article  CAS  Google Scholar 

  16. Karout A, Buisson P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts. J Sol-Gel Sci Technol 36:163–171

    Article  CAS  Google Scholar 

  17. Wang J (1995) Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J Non-Cryst Solids 186:296–300

    Article  CAS  Google Scholar 

  18. Xu L, Jiang Y, Feng J, Yue C (2015) Infrared-opacified Al2O3–SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceram Int 41:437–442

    Article  Google Scholar 

  19. Kim CY, Lee JK, Kim BI (2008) Synthesis and pore analysis of aerogel–glass fiber composites by ambient drying method. Colloid Surf A 313:179–182

    Article  Google Scholar 

  20. Li Z, Cheng XD, He S, Shi XJ, Gong LL, Zhang HP (2016) Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos Part A Appl Sci Manuf 99:349–355

    CAS  Google Scholar 

  21. Liu HL, Chu P, Li HY, Zhang HY, Li JD (2016) Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure. J Sol-Gel Sci Technol 80:651–659

    Article  CAS  Google Scholar 

  22. Leventis N (2007) Three-dimensional core–shell superstructures: mechanically strong aerogels. Acc Chem Res 40:874–884

    Article  CAS  Google Scholar 

  23. Yang XG, Wei J, Shi DQ, Sun YT, Lv SQ, Feng J, Jiang YG (2014) Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel. Mater Sci Eng R 609:125–130

    Article  CAS  Google Scholar 

  24. Yuan B, Ding S, Wang D, Li H (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206

    Article  CAS  Google Scholar 

  25. Huang Y, Liu JL (2015) Energy and visual performance of the silica aerogel glazing system in commercial buildings of Hong Kong. Constr Bulid Mater 94:57–72

    Article  Google Scholar 

  26. Zhang Y, Jing OY, Yang HM (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259

    Article  CAS  Google Scholar 

  27. Tayser SG, Abdul AHK, Patina KAM, Ahmed AA, Abu BS, Mohamed HN, Ahed HJ (2017) Unique halloysite nanotubes–polyvinyl alcohol–polyvinylpyrrolidone composite complemented with physico-chemical characterization. Polymers (Basel) 9:207

    Article  Google Scholar 

  28. Cheng ZL, Qin XX, Liu Z, Qin DZ (2017) Electrospinning preparation and mechanical properties of PVA/HNTs composite nanofibers. Polym Adv Technol 28:52–56

    Article  Google Scholar 

  29. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112:75–93

    Article  Google Scholar 

  30. Gaaz TS, Sulong AB, Kadhum AAH, Al-Amiery AA, Nassir MH, Jaaz AH (2017) The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules 22:838

    Article  Google Scholar 

  31. Lvov Y, Wang WC, Zhang LQ, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:227–1250

    Article  Google Scholar 

  32. Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38:1690–1719

    Article  CAS  Google Scholar 

  33. Liu M, Guo B, Du M, Chen F, Jia D (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer 50:3022–3030

    Article  CAS  Google Scholar 

  34. Rooj S, Das A, Thakur V, Mahaling RN, Bhowmick AK, Heinrich G (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31:2151–2156

    Article  CAS  Google Scholar 

  35. Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3:25–29

    Google Scholar 

  36. Zhang AB, Pan L, Zhang HY, Liu ST, Ye Y, Xia MS, Chen XG (2012) Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloid Surf A 396:182–188

    Article  CAS  Google Scholar 

  37. Cavallaro G, Donato DI, Lazzara G, Milioto S (2011) Films of halloysite nanotubes sandwiched between two layers of biopolymer: from the morphology to the dielectric, thermal, transparency, and wettability properties. J Phys Chem C 115:20491–20498

    Article  CAS  Google Scholar 

  38. Cavallaro G, Lazzara G, Milioto S (2010) Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study. Langmuir 27:1158–1167

    Article  Google Scholar 

  39. Ferris CJ, Gilmore KJ, Wallace GG, Panhuis MIH (2013) Modified gellan gum hydrogels for tissue engineering applications. Soft Matter 9:3705–3711

    Article  CAS  Google Scholar 

  40. Vahedi V, Pasbakhsh P, Chai SP (2015) Toward high performance epoxy/halloysite nanocomposites: new insights based on rheological, curing, and impact properties. Mater Des 68:42–53

    Article  CAS  Google Scholar 

  41. Peng WH, Lee YY, Wu C, Wu KCW (2012) Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. J Mater Chem 22:23181–23185

    Article  CAS  Google Scholar 

  42. Zeng S, Reyes C, Liu J, Rodgers PA, Wentworth SH, Sun L (2014) Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications. Polymer 55:6519–6528

    Article  CAS  Google Scholar 

  43. Lee IW, Li J, Chen X, Park HJ (2015) Electrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium d‐pantothenate. J Appl Polym Sci 133:4

    Google Scholar 

  44. Liu HL, He X, Li HY, Yang AW, Xiao R, Wei N (2017) Preparation and properties of HNTs/SiO2 composite aerogels. J Synth Cryst 46:2277–2282

    Google Scholar 

  45. Cai J, Liu SL, Feng J, Kimura S (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079

    Article  CAS  Google Scholar 

  46. Sai H, Xing L, Xiang J, Cui L (2013) Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J Mater Chem A 1:7963–7970

    Article  CAS  Google Scholar 

  47. Fei ZF, Yang ZC, Chen GB, Li KF, Zhao S, Su GH (2018) Preparation and characterization of glass fiber/polyimide/SiO2 composite aerogels with high specific surface area. J Mater Sci. https://doi.org/10.1007/s10853-018-2553-4

    Article  CAS  Google Scholar 

  48. Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non-Cryst Solids 354:4556–4561

    Article  CAS  Google Scholar 

  49. He C, He YL, Xie T, Liu Q (2013) Predictions of the effective thermal conductivity for aerogel-fiber composite insulation materials using lattice Boltzmann method. J Eng Thermophys 34:742–745

    Google Scholar 

  50. Qu ZG, Fu YD, Liu Y, Zhou L (2018) Approach for predicting effective thermal conductivity of aerogel materials through a modified lattice Boltzmann method. Appl Therm Eng 132:730–739

    Article  Google Scholar 

  51. Lepinasse E, Goetz V, Crosat G (1994) Modelling and experimental investigation of a new type of thermochemical transformer based on the coupling of two solid–gas reactions. Chem Eng Process 33:125–134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51772202 and 51472175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, S., Li, H. et al. HNTs/SiO2 dual-network aerogels with improved strength and thermal insulation. J Sol-Gel Sci Technol 88, 519–527 (2018). https://doi.org/10.1007/s10971-018-4851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4851-3

Keywords

Navigation