Skip to main content
Log in

Design and study of ADC/BCN/metal oxide gas-generating agents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Characterized with low burning temperature and low concentration of toxic gases, the azodicarbonamide (ADC), basic cupric nitrate (BCN) and 10 % metal oxide (CuO, ZnO, MnO2, Fe2O3) gas-generating agents have been investigated. The thermal analysis results show that the thermal decomposition process of ADC/BCN/metal oxide is similar to that of ADC/BCN, and the addition of metal oxides makes the initial decomposition temperature decrease. Among the ADC/BCN/metal oxide mixtures that were examined, ADC/BCN/CuO mixture exhibits a better burning performance. The maximum burning temperature (735 °C) and combustion heat (1900.5 J g−1) have a relatively low value, and the content of CO is the lowest (8390 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kirchoff GF, Schneiter FE. Pelletizable, rapid and cool burning solid nitrogen gas generate. US Patent 4203787; 1980.

  2. Munich S Z, Deisenhofen WH. Gas-generating composition. US Patent 4834817; 1989.

  3. Catwright R V. Crash bag propellant composition and method for generating nitrogen gas. US Patent 4929290; 1990.

  4. Ramaswamy CP, Souriraja PR. Gas generating composition for air bags. US Patent 5089069; 1992.

  5. Ube YI, Kitakyushu KI, Yamaguchi MM. Gas generating composition for automobile air bag. US Patent 5178696; 1993.

  6. Chen S, Cheng Y. Study on composition of sodium azide gas generan. Initiat Pyrotech. 2001;4:37–9.

    CAS  Google Scholar 

  7. Chang S, Lamm SH. Human health effects of sodium azide exposure: a literature review and analysis. Int J Toxicol. 2003;22(3):175–86.

    Article  CAS  Google Scholar 

  8. Trout D, Esswein EJ, Brown K, Solomon G, Miller M. Exposure and health effects: an evaluation of workers at sodium azide production. Am J Ind Med. 1996;30(3):343–50.

    Article  CAS  Google Scholar 

  9. Hongshe W. Study on nitrogen-rich based gas generating pyrotechnic compositions. Ph.D. dissertation, Beijing: Beijing Institute of Technology; 2005.

  10. Qamirani E, Razavi HM, Wu X, Davis MJ, Kuo L, Hein TW. Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+–K+–ATPase. Am J Physiol Heart Circ Physiol. 2006;290(4):H1617–23.

    Article  CAS  Google Scholar 

  11. Xiande Y. Productions and applications of azodicarbonamide foaming agent in China. Chem Propellants Polym Mater. 2004;1:44–48.

  12. Oxley JC, Smith JL, Naik S, Moran J. Decompositions of urea and guanidine nitrates. J Energ Mater. 2009;27:17–39.

    Article  CAS  Google Scholar 

  13. Takashi K, Yoshida T. The combustion characteristic of ADCA. Gunpower Soc. 1995;56(6):249.

    Google Scholar 

  14. Hara K, Yoshida T. Proceedings of the 20th international pyrotechnics seminar. Colorado Springs, USA, 9; 1994.

  15. Hara Kazuo, Yoshida Tadao. Concept and performance of a non-azide propellant for automotive. Propellants Explos Pyrotech. 1998;23:28–33.

    Article  CAS  Google Scholar 

  16. Jianzhou W. Gas-generating agent composition. CN Patent 200410086968.7; 2003.

  17. Jianzhou W. Gas-generating agent composition. CN Patent 03801083.6; 2003.

  18. Yuping Li. The study of a new gas generating composition for automobile safety airbag. Master dissertation, North University of China; 06-01, 2010.

  19. Matsuoka Ichi, Toyama. The gas generating composition. CN Patent 95192492.3. 1995.

  20. Li Yanchun, Cheng Yi, Hui Yun-Long, Yan Shi. The effect of ambient temperature and boron content on the burning rate of the B/Pb3O4 delay compositions. J Energ Mater. 2010;28:77–84.

    Article  Google Scholar 

  21. Reed RA. The kinetics and mechanism of the thermal decomposition of azodicarbonamide. Br Plast. 1960;33(10):468–72.

    CAS  Google Scholar 

  22. Mei Xinliang, Cheng Yi, Li Yanchun. Thermal decomposition properties of guanidine nitrate and basic cupric nitrate. J Therm Anal Calorim. 2013;114:131–5.

    Article  CAS  Google Scholar 

  23. Hao J, Yu J, Bao G, Che J. Pre-ignition reactions mechanism of B/BaCrO4 delay composition. Initiat Pyrotech 2006;3:27–9.

  24. Jie Zhang, Ling Shi, JunYing Zhang. The mechanism of thermal decomposition of azodicarbonamide and the influence of zinc oxide. Natural Science. 2011;38(3):39–42.

    Google Scholar 

  25. Akiyoshi Miyako, Nakamura Hidetsugu, Hara Yasutake. The strontium complex nitrates of carbohydrazide as a non-azide gas generator for safer driving-the thermal behavior of the Sr complex with various oxidizing agents. Propellants Explos Pyrotech. 2000;25:224–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the National Natural Science Foundation of China (NSFC51202113) and Central Universities (NUST 2011 YBXM10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Xu, T., Zhu, X. et al. Design and study of ADC/BCN/metal oxide gas-generating agents. J Therm Anal Calorim 123, 75–80 (2016). https://doi.org/10.1007/s10973-015-4858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4858-8

Keywords

Navigation