Skip to main content
Log in

Meshfree cohesive cracking method for dynamic material failure

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

We develop a cohesive meshfree crack method for material failure under dynamic loading conditions. Failure is modeled by discrete crack approach. Crack is represented by a set of cohesive crack segments that are restricted to lie on the nodes but which can be arbitrarily oriented. Propagation of the crack is achieved by activation of crack surfaces at individual nodes, so no representation of the crack surface is needed. The crack is modeled by local enrichment of the test and trial functions with sign function, so that discontinuities are along the direction of the crack. A set of cracking rules is developed to avoid spurious cracking. The method is applied to two problems and compared to experimental data and results of other researchers. The results are very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L.: Crack propagation by element-free galkerin methods. Eng. Fract. Mech. 51, 295–315 (1994a)

    Article  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994b)

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  • Belytschko, T., Guo, Y., Liu, W.K., Xiao, S.P.: A unified stability analysis of meshfree particle methods. Int. J. Numer. Methods Eng. 48, 1359–1400 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Bordas, S., Rabczuk, T., Zi, G.: Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Eng. Fract. Mech. 75, 943–960 (2008)

    Article  Google Scholar 

  • Fineberg, J., Sharon, E., Cohen, G.: Crack front waves in dynamic fracture. Int. J. Fract. 121, 55–69 (2003)

    Article  Google Scholar 

  • Fleming, M., Chu, Y.A., Moran, B., Belytschko, T.: Enriched element-free galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 40, 1483–1504 (1997)

    Article  MathSciNet  Google Scholar 

  • Hao, S., Liu, W.K., Klein, P.A., Rosakis, A.J.: Modeling and simulation of intersonic crack growth. Int. J. Solids Struct. 41(7), 1773–1799 (2004)

    Article  MATH  Google Scholar 

  • Kalthoff, J.F.: Modes of dynamic shear failure in solids. Int. J. Fract. 101, 1–31 (2000)

    Article  Google Scholar 

  • Kalthoff, J.F., Winkler, S.: Failure mode transition at high rates of shear loading. International Conference on Impact Loading and Dynamic Behavior of Materials, vol. 1, pp. 185–195 (1987)

  • Li, S., Simonson, B.C.: Meshfree simulation of ductile crack propagation. Int. J. Comput. Methods Eng. Sci. Mech. 6, 1–19 (2003)

    Article  MATH  Google Scholar 

  • Li, S., Simkins, D.C.: Conserving galerkin weak formulations for computational fracture mechanics. Commun. Numer. Methods Eng. 18, 835–850 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Li, S., Hao, W., Liu, W.K.: Mesh-free simulations of shear banding in large deformation. Int. J. Solids Struct. 37, 7185–7206 (2000)

    Article  MATH  Google Scholar 

  • Li, S., Liu, W.K., Rosakis, A., Belytschko, T., Hao, W.: Mesh free galerkin simulations of dynamic shear band propagation and failure mode transition. Int. J. Solids Struct. 39, 1213–1240 (2002)

    Article  MATH  Google Scholar 

  • Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Pandolfi, A., Krysl, P., Ortiz, M.: Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture. Int. J. Fract. 95, 279–297 (1999)

    Google Scholar 

  • Rabczuk, T., Areias, P.M.A.: A new approach for modelling slip lines in geological materials with cohesive models. Int. J. Numer. Anal. Methods Geomech. 30(11), 1159–1172 (2006a)

    Article  Google Scholar 

  • Rabczuk, T., Areias, P.: A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput. Model. Eng. Sci. 16(2), 115–130 (2006b)

    Google Scholar 

  • Rabczuk, T., Belytschko, T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Methods Eng. 61(13), 2316–2343 (2004)

    Article  MATH  Google Scholar 

  • Rabczuk, T., Belytschko, T.: Adaptivity for structured meshfree particle methods in 2d and 3d. Int. J. Numer. Methods Eng. 63(11), 1559–1582 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Belytschko, T.: Application of particle methods to static fracture of reinforced concrete structures. Int. J. Fract. 137(1-4), 19–49 (2006)

    Article  Google Scholar 

  • Rabczuk, T., Belytschko, T.: A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Methods Appl. Mech. Eng. 196, 2777–2799 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Samaniego, E.: Discontinuous modelling of shear bands using adaptive meshfree methods. Comput. Methods Appl. Mech. Eng. 197, 641–658 (2008)

    MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Zi, G.: A meshfree method based on the local partition of unity for cohesive cracks. Comput. Mech. 39(6), 743–760 (2007)

    Article  MATH  Google Scholar 

  • Rabczuk, T., Belytschko, T., Xiao, S.P.: Stable particle methods based on lagrangian kernels. Comput. Methods Appl. Mech. Eng. 193, 1035–1063 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Rabczuk, T., Bordas, S., Zi, G.: A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput. Mech. 40(3), 473–495 (2007a)

    Article  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., Zi, G.: A three-dimensional meshfree method for continuous multiple crack initiation, nucleation and propagation in statics and dynamics. Comput. Mech. 40(3), 473–495 (2007b)

    Article  MATH  Google Scholar 

  • Rabczuk, T., Areias, P.M.A., Belytschko, T.: A simplified mesh-free method for shear bands with cohesive surfaces. Int. J. Numer. Methods Eng. 69(5), 993–1021 (2007c)

    Article  MathSciNet  Google Scholar 

  • Rabczuk, T., Areias, P.M.A., Belytschko, T.: A meshfree thin shell method for non-linear dynamic fracture. Int. J. Numer. Methods Eng. 72(5), 524–548 (2007d)

    Article  MathSciNet  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., Nguyen-Xuan, H.: A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Eng. Fract. Mech. 75, 4740–4758 (2008)

    Article  Google Scholar 

  • Rabczuk, T., Song, J.-H., Belytschko, T.: Simulations of instability in dynamic fracture by the cracking particles method. Eng. Fract. Mech. 76, 730–741 (2009)

    Article  Google Scholar 

  • Rabczuk, T., Gracie, R., Song, J.-H., Belytschko, T.: Immersed particle method for fluid-structure interaction. Int. J. Numer. Methods Eng. 81, 48–71 (2010)

    MATH  MathSciNet  Google Scholar 

  • Ravi-Chandar, K.: Dynamic fracture of nominally brittle materials. Int. J. Fract. 90, 83–102 (1998)

    Article  Google Scholar 

  • Sharon, E., Gross, P.S.P., Fineberg, J.: Local crack branching as a mechanism for instability in dynamic fracture. Phys. Rev. Lett. 74, 5096–5099 (1995)

    Article  Google Scholar 

  • Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397–1434 (1994)

    Article  MATH  Google Scholar 

  • Zhang, Y.Y.: Meshless modelling of crack growth with discrete rotating crack segments. Int. J. Mech. Mater. Design 4(1), 71–77 (2008)

    Article  Google Scholar 

  • Zi, G., Rabczuk, T., Wall, W.: Extended meshfree methods without branch enrichment for cohesive cracks. Comput. Mech. 40(2), 367–382 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S. Meshfree cohesive cracking method for dynamic material failure. Int J Mech Mater Des 6, 103–111 (2010). https://doi.org/10.1007/s10999-010-9109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-010-9109-3

Keywords

Navigation