Skip to main content
Log in

Why ribonucleases induce tumor cell death

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The characteristics and the possible mechanisms of action of cytotoxic ribonucleases (RNases), promising antitumor drugs, are described. Original experimental data and the results of analysis of recent publications have made it possible to identify the cellular components providing for the selective effects of exogenous RNases on tumor cells, on the one hand, and to estimate the contributions of individual molecular determinants to the enzyme cytotoxicity, on the other hand. The predominant effect of the electric charge of the RNase molecule on the induction of cell death has been demonstrated. The cytotoxic effects of RNases are determined by the catalytic cleavage of accessible RNA, the action of the products of its hydrolysis, and the noncatalytic electrostatic interaction of the exogenous enzyme with cell components. Potential RNase targets in a tumor cell and the role of modulation of calcium-dependent potassium channels and the ras oncogene in RNase-induced cell damage are considered. The effect of cytotoxic RNases on gene expression by affecting RNA interference is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Deutscher M.P., Li Z. 2001. Exoribonucleases and their multiple roles in RNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 66, 67–105.

    Google Scholar 

  2. Harder J., Schroder J.M. 2002. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J. Biol. Chem. 277, 46784–46799.

    Google Scholar 

  3. Rosenberg H.F., Domachowske J.B. 2001. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J. Leukoc. Biol. 70, 691–698.

    Google Scholar 

  4. Leland P., Raines R. 2001. Cancer chemotherapy: Ribonucleases to the rescue. Chem. Biol. 8, 405–413.

    Google Scholar 

  5. Matousek J. 2001. Ribonucleases and their antitumor activity. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 129, 175–191.

    Google Scholar 

  6. Mikulski S.M., Costanzi J.J., Vogelzang N.J., McCachren S., Taub R.N., Chun H., Mittelman A., Panella T., Puccio C., Fine R., Shogen K. 2002. Phase II trial of a single weekly intravenous dose of rapirnase in patient with unresectable malignant mesothelioma. J. Clin. Oncol. 20, 274–281.

    Google Scholar 

  7. Ogawa Y., Iwama M., Ohgi K., Tsuji T., Irie M., Itagaki T., Kobajashi H., Inokushi N. 2002. Effect of replacing the aspartic acid/glutamic acid residues of bullfrog sialic acid binding lectin with asparagine/glutamine and arginine on the inhibition of cell proliferation in murine leukemia P388 cells. Biol. Pharm. Bull. 25, 722–727.

    Google Scholar 

  8. Antignani A., Naddo M., Cubellis M.V., Russo A., D’Alessio G. 2001. Antitumor action of seminal ribonuclease, its dimeric structure, and its resistance to the ribonuclease inhibitor. Biochemistry. 40, 3492–3496.

    Google Scholar 

  9. Newton D.L., Kaur G., Rhim J.S., Sausville E.A., Rybak S.M. 2001. RNA damage and inhibition of neoplastic endothelial cells growth: Effects of human and amphibian ribonucleases. Radiat. Res. 155, 171–174.

    Google Scholar 

  10. Maeda T., Mahara K., Kitazoe M., Futami J., Takidini A., Kosaka M., Tada H., Seno M., Yamada H. 2002. RNase 3 (ECP) is an extraordinarily stable protein among human pancreatic-type RNases. J. Biochem. (Tokyo). 132, 737–742.

    Google Scholar 

  11. Halicka D.H., Pozarowski P., Ita M., Ardelt W.J., Mikulski S.M., Shogen K., Darzynkiewicz Z. 2002. Enhancement of activation-induced apoptosis of lymphocytes by the cytotoxic ribonuclease (rapirnase). Int. J. Oncol. 21, 1245–1250.

    Google Scholar 

  12. Ilinskaya O., Decker K., Koschinski A., Dreyer F., Repp H. 2001. Bacillus intermedius ribonuclease as inhibitor of cell proliferation and membrane current. Toxicology. 156, 101–107.

    Google Scholar 

  13. Sevcik J., Urbanikova L., Leland P.A., Raines R.T. 2002. X-Ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity. J. Biol. Chem. 277, 47325–47330.

    Google Scholar 

  14. Olmo N., Turnay J., Gonzalez de Butitrago G., Lopez de Silanes I., Gavilanes J.G., Lizarbe M.A. 2001. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur. J. Biochem. 268, 1245–1250.

    Google Scholar 

  15. Cho S., Joshi J.G. 1989. Ribonuclease inhibitor from pig brain: Purification, characterization, and direct spectrophotometric assay. Anal. Biochem. 176, 175–179.

    Google Scholar 

  16. Abraham A.T., Lin J., Newton D.L., Rybak S., Hecht S. 2003. RNA cleavage and inhibition of protein synthesis by bleomycin. Chem. Biol. 10, 45–52.

    Google Scholar 

  17. Batey R.T., Doudna J.A. 2002. Structural and energetic analysis of metal ions essential to SRP signal recognition domain assembly. Biochemistry. 41, 11703–11710.

    Google Scholar 

  18. McManus M.T. 2003. MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258.

    Google Scholar 

  19. Couzin J. 2002. Small RNAs make big splash. Science. 298, 2296–2297.

    Google Scholar 

  20. Saxena S.K., Shogen K., Ardelt W. 2003. Onconase and its therapeutic potential. Lab. Med. 34, 380–387.

    Google Scholar 

  21. Saxena S.K., Sirdeshmukh R., Ardelt W., Mikulski S.M., Shogen K., Youle R.J. 2003. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J. Biol. Chem. 277, 15142–15146.

    Google Scholar 

  22. Ardelt B., Ardelt W., Darzynkiewicz Z. 2003. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle. 2, A10–F12.

    Google Scholar 

  23. Sorrentino S., Naddeo M., Russo A., D’Alessio G. 2003. Degradation of double-stranded RNA by human pancreatic ribonuclease: Crucial role of noncatalytic basic amino acid residues. Biochemistry. 42, 10182–19190.

    Google Scholar 

  24. Blaszczyk J., Gan J., Tropea J.E., Court D.L., Waugh D.S., Ji X. 2004. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure (Cambridge). 12, 457–466.

    Google Scholar 

  25. Ran S., Downes A., Thorpe P.E. 2002. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 62, 6132–6140.

    Google Scholar 

  26. Ran S., Thorpe P.E. 2002. Phosphatidylserine is a marker of tumor vasculature and potential target for cancer imaging and therapy. Int. J. Radiat. Oncol. Biol. Phys. 54, 1479–1484.

    Google Scholar 

  27. Haigis M.C., Raines R.T. 2002. Secretory ribonucleases are internalized by a dynamin-independent endocytic pathway. J. Cell Sci. 116, 313–324.

    Google Scholar 

  28. Bracale A., Spalletti-Cernia D., Mastronicola M., Castaldi F., Mannucci R., Nitsch L., D’Alessio G. 2002. Essential stations in the intracellular pathway of cytotoxic bovine seminal ribonuclease. Biochem. J. 362, 553–560.

    Google Scholar 

  29. Gho Y.S., Yoon W.H., Chae C.B. 2002. Antiplasmin activity of a peptide that binds to the receptor-binding site of angiogenin. J. Biol. Chem. 277, 9690–9694.

    Google Scholar 

  30. Kourie J.I., Henry C.L. 2002. Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: The role of dangerous unchaperoned molecules. Clin. Exp. Pharmacol. Physiol. 29, 741–753.

    Google Scholar 

  31. Egorov S.Yu., Dmitriev I.I., Naumova E.S., Kupriyanova-Ashina F.G. 1996. An immunochemical study of Bacillus intermedius ribonuclease entry into Candida tropicalis cells and effects of the enzyme on yeast growth. Tsitologiya. 38, 66–69.

    Google Scholar 

  32. Prior T.I., Kunwar S., Pastan I. 1996. Studies on the activity of barnase toxins in vitro and in vivo. Bioconjug. Chem. 7, 23–29.

    Google Scholar 

  33. Mizejewski G.T. 2002. Biological role of alpha-fetoprotein in cancer: Prospects for anticancer therapy. Expert Rev. Anticancer Ther. 2, 709–735.

    Google Scholar 

  34. Hursey M., Newton D.L., Hansen H.J., Ruby D., Goldenberg D.M., Rybak S.M. 2002. Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents: A new generation of therapeutics. Leuk. Lymphoma. 43, 953–959.

    Google Scholar 

  35. Huhn M., Sasse S., Tur M.K., Matthey B., Scinkothe T., Rybak S.M., Barth S., Engert A. 2001. Human angiogenin fused to human CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res. 61, 8737–8742.

    Google Scholar 

  36. Di Lorenzo C., Nigro A., Piccoli R., D’Alessio G. 2002. A new RNase-based immunoconjugate selectively cytotoxic for ErbB2-overexpressing cells. FEBS Lett. 516, 208–212.

    Google Scholar 

  37. Psarras K., Ueda M., Tanabe M., Kitajima M., Aiso S., Komatsu S., Seno M. 2000. Targeting activated lymphocytes with an antirelay human immunotoxin analogue: Human pancreatic RNase1—human IL-2 fusion. Cytokine. 12, 786–790.

    Google Scholar 

  38. Sills R.C., Boorman G.A., Neal J.E., Hong H.L., Devereux T.R. 1999. Mutations in ras genes in experimental tumor of rodents. IARC Sci. Publ. 146, 55–86.

    Google Scholar 

  39. Smith M.R., Newton D.L., Mikulski S.M., Rybak S.M. 1999. Cell cycle-related differences in susceptibility of NIH/3T3 cells to ribonucleases. Exp. Cell. Res. 247, 220–232.

    Google Scholar 

  40. Ilinskaya O.N., Dreyer F., Mitkevich V.A., Shaw K.L., Pace C.N., Makarov A.A. 2002. Changing the net charge from negative to positive makes ribonuclease Sa cytotoxic. Protein Sci. 11, 2522–2525.

    Google Scholar 

  41. Scharovsky O.G., Rozados V.R., Gervasoni S.I., Matar P. 2000. Inhibition of ras oncogene: A novel approach to antineoplastic therapy. J. Biochem. Sci. 7, 292–298.

    Google Scholar 

  42. Falconer M., Smith F., Sura-Narwal S., Congrave G., Liu Z., Hayter P., Ciaramella G., Keighley W., Haddock P., Waldron G., Sewing A. 2002. High-throughput screening for ion channel modulators. J. Biomol. Screen. 7, 460–465.

    Google Scholar 

  43. Chi X., Sutton E.T., Hellermenn G., Price J.M. 2000. Potassium channel openers prevent beta-amyloid toxicity in bovine vascular endothelial cells. Neurosci. Lett. 290, 9–12.

    Google Scholar 

  44. Ilinskaya O., Koschinski A., Mitkevich V., Repp H., Dreyer F., Pace N., Makarov A. 2004. Cytotoxicity of RNases is increased by cationization and counteracted by K Ca channels Biochem. Biophys. Res. Commun. 314, 550–554.

    Google Scholar 

  45. Schmittschmitt J.P., Scholtz M. 2003. The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci. 12, 2374–2378.

    Google Scholar 

  46. Repp H., Koshinski A., Decker K., Dreyer F. 1998. Activation of a Ca2+-dependent K+ current in mouse fibroblasts by lysophosphatidic acid requires a pertussis toxin-sensitive G protein and Ras. Naunyn-Schmiedeberg’s Arch. Pharmacol. 358, 509–517.

    Google Scholar 

  47. Decker K., Koshinski A., Trouliaris S., Tamura T., Dreyer F., Repp H. 1998. Activation of a Ca2+-dependent K+ current by the oncogenic receptor protein tyrosine kinase v-Fms in mouse fibroblasts. Naunyn-Schmiede-berg’s Arch. Pharmacol. 357, 378–384.

    Google Scholar 

  48. Ilinskaya O.N., Kolpakov A.I. Cell targets for the antitumor action of microbial endonucleases. Naukoemk. Tekhnol. 4, 61–67.

  49. Jensen B., Hertz M., Christophersen P., Madsen L. 2002. The Ca2+-activated K+ channel of intermediate conductance: A possible target for immune suppression. Expert. Opin. Ther. Targets. 6, 623–636.

    Google Scholar 

  50. Ilinskaya O.N., Ivanchenko O.B., Karamova N.S., Kipenskaya L.V. 1996. SOS-inducing ability of native and mutant microbial ribonucleases. Mut. Res. 354, 203–209.

    Google Scholar 

  51. Ilinskaya O.N., Ivanchenko O.B., Karamova N.S. 1995. Bacterial ribonuclease: Mutagenic effect in microbial test-systems. Mutagenesis. 10, 165–170.

    Google Scholar 

  52. Ilinskaya O.N., Vamvakas S. 1997. Nephrotoxic effects of bacterial ribonucleases in the isolated perfused rat kidney. Toxicology. 120, 55–63.

    Google Scholar 

  53. Ilinskaya O.N., Frai H. 2000. Genotoxic effects of ribonuclease in vivo. Biopolim. Kletka. 4, 270–274.

    Google Scholar 

  54. Iordanov M.S., Ryabinina O.P., Wong J., Newton D.L., Rybak S.M., Magun B.E. 2000. Molecular determinants of apoptosis induced by the cytotoxic ribonuclease onconase: Evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res. 60, 1983–1994.

    Google Scholar 

  55. Futami J., Maeda T., Kitazoe M., Nukui E,. Tada H., Seno M., Kosaka M., Yamada H. 2001. Preparation of potent cytotoxic ribonucleases by cationization: Enhanced cellular uptake and decreased interaction with ribonuclease inhibitor by chemical modification of carboxyl groups. Biochemistry. 40, 7518–7524.

    Google Scholar 

  56. Rosenberg H.F. 1995. Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J. Biol. Chem. 270, 7876–7881.

    Google Scholar 

  57. Kurinenko B.M., Bulgakova R.Sh., Davydov R.E. 1998. Effect of ribonuclease from Bacillus intermedius on human blood lymphocytes. FEMS Immunol. Med. Microbiol. 21, 117–122.

    Google Scholar 

  58. Klink T.A., Raines R.T. 2000. Conformational stability is a determinant of ribonuclease A cytotoxicity. J. Biol. Chem. 275, 17463–17467.

    Google Scholar 

  59. Leland P.A., Staniszewski K.E., Kim B.M., Raines R. 2000. A synamorphic disulfide bond is critical for the conformational stability and cytotoxicity of an amphibian ribonuclease. FEBS Lett. 477, 203–207.

    Google Scholar 

  60. Notomista E., Catanzano F., Graziano G., Di Gaetano S., Barone G., Di Donato A. 2001. Contribution of chain termini to the conformational stability and biological activity of onconase. Biochemistry. 40, 9097–9103.

    Google Scholar 

  61. Matousek J., Pouckova P., Hlouskova D., Zadvinova M., Soucek J., Skvor J. 2004. Effect of hyaluronidase and PEG chain conjugation on the biologic and antitumor activity of RNase A. J. Contr. Release. 94, 401–410.

    Google Scholar 

  62. Kim B.M., Kim H., Raines R., Lee Y. 2004. Glycosylation of onconase increases its conformational stability and toxicity for cancer cells. Biochem. Biophys. Res. Commun. 315, 976–983.

    Google Scholar 

  63. Piccoli R., Di Gaetano S., De Lorenzo C., Grauso M., Monaco C., Spalletti-Cernia D., Laccetti P., Cinatl J., Matousek J., D’Alessio G. 1999. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc. Natl. Acad. Sci. USA. 96, 7768–7773.

    Google Scholar 

  64. Spalletti-Cernia D., Sorrentino R., Di Gaetano S., Piccoli R., Santoro V., D’Alessio G., Laccetti P., Vacchio G. 2004. Highly selective toxic and proapoptotic effects of two dimeric ribonucleases on thyroid cancer cells compared to the effects of doxorubicin. Br. J. Cancer. Res. 90, 270–277.

    Google Scholar 

  65. Matousek J., Gotte G., Pouckova P., Soucek J., Slavik T., Vottariello F., Libonati M. 2003. Antitumor activity and other biological actions of oligomers of ribonuclease A. J. Biol. Chem. 278, 23817–23822.

    Google Scholar 

  66. Futami J., Nukui E., Maeda T., Kosaka M., Tada H., Sano M., Yamada H. 2002. Optimum modification for the highest cytotoxicity of cationized ribonuclease. J. Biochem. (Tokyo). 132, 223–228.

    Google Scholar 

  67. Makarov A.A., Ilinskaya O.N. 2003. Cytotoxic ribonucleases: Molecular weapons and their targets. FEBS Lett. 540, 15–20.

    Article  Google Scholar 

  68. Bosch M., Benito A., Ribo M., Puig T., Beaumelle B., Vilanova M. 2004. A nuclear localization sequence endows human pancreatic ribonuclease with cytotoxic activity. Biochemistry. 43, 2167–2177.

    Google Scholar 

  69. Iwama M., Ogawa Y., Sasaki N., Nitta K., Takajanagi Y., Ohgi K., Tsuji T., Irie M. 2001. Effect of modification of the carboxyl groups of sialic acid binding lectin from bullfrog (Rana catesbiana) oocyte on anti-tumor activity. Biol. Pharm. Bull. 24, 978–981.

    Google Scholar 

  70. Xu H., He W.J., Liu W.Y. 2004. A novel ribotoxin with ribonuclease activity that specifically cleaves a single phosphodiester bond in rat 28S ribosomal RNA and inactivates ribosome. Arch. Biochem. Biophys. 427, 30–40.

    Google Scholar 

  71. Xia H.C., Li F., Zhang Z.C. 2003. Purification and characterization of Moschatin, a novel type I ribosome-inactivated protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res. 13, 369–374.

    Google Scholar 

  72. Masaki H., Ogawa T. 2002. The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie. 84, 433–438.

    Google Scholar 

  73. Gaur D., Seth D., Batra J.K. 2002. Glycine 38 is crucial for the ribonucleolytic activity of human pancreatic ribonuclease on double-stranded RNA. Biochem. Biophys. Res. Commun. 297, 390–395.

    Google Scholar 

  74. Juan G., Ardelt B., Li X., Mikulski S.M., Shogen K., Ardelt W., Mittelman A., Darzynkiewicz Z. 1998. G1 arrest of U-937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia. 12, 1241–1248.

    Google Scholar 

  75. Vlasov V.V. 2004. Oligonucleotides as a basis for gene-directed therapeutics. Vestn. Ross. Akad. Nauk. 74, 419–423.

    Google Scholar 

  76. Kuwabara T., Hsieh J., Nakashima K., Taira K., Gage F.H. 2004. A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell. 116, 779–793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 3–13.

Original Russian Text Copyright © 2005 by Ilinskaya, Makarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilinskaya, O.N., Makarov, A.A. Why ribonucleases induce tumor cell death. Mol Biol 39, 1–10 (2005). https://doi.org/10.1007/s11008-005-0001-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0001-4

Key words

Navigation