Skip to main content
Log in

Relativistic Effects on Moving Clocks

  • TIME AND FREQUENCY MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Using the general theory of relativity we obtain practical formulas for calculating relativistic effects on clocks moving in the anomalous gravitational field of the Earth. We examine compensation methods for these effects and determine the compensation error using the orbital parameters of the motion path for clocks in GLONASS/GPS systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hafele and R. Keating, “Around-the-World Atomic Clocks: Predicted Relativistic Time Gains,” Science, 177, 166–168 (1972).

    Article  ADS  Google Scholar 

  2. R. Vessot and M. A. Levine, “Test of the Equivalence Principle Using a Space-Borne Clock,” Gen. Rel. Grav., 10, No. 3, 181–204 (1979).

    Article  ADS  Google Scholar 

  3. L. B. Borisova and V. N. Melnikov, “Relativistic corrections to readings from a portable clock,” Izmer. Tekhn., No. 4, 13–15 (1988); Measur. Techn., 31, No. 4, 323–327 (1988).

  4. V. F. Fateev, Relativistic Theory of Navigation and Timing, Mozhaiskii VKA, Leningrad (1988).

    Google Scholar 

  5. Yu. N. Medvedev and Yu. F. Smirnov, “Evaluating relativistic and gravitational corrections when moving transportable quantum clocks,” Metrology of Time and Space: Proc. 5th Russ. Symp., VNIIFTRI, Moscow (1994), pp. 342–343.

  6. G. Petit and P. Wolf, “Relativistic theory for time comparisons: a review,” Metrologia, 42 , 138–144 (2005).

    Article  ADS  Google Scholar 

  7. B. A. Gaygerov and V. P. Sysoev, “Relativistic effects in comparisons of time scales by means of transportable quantum clocks,” Izmer. Tekhn., No. 2, 25–29 (2012); Measur. Techn., 55, No. 2, 143–150 (2012).

  8. K. Muller, Theory of Relativity, Atomizdat, Moscow (1975).

    Google Scholar 

  9. S. Kopeikin, M. Efroimsky, and G. Kaplan, Relativistic Celestial Mechanics of the Solar System, WILEY-VCH, Berlin (2011).

    Book  MATH  Google Scholar 

  10. Recommendation ITU-R TF.2018 (08/2012), Relativistic Time Transfer in the Vicinity of Earth and in the Solar System, www.itu.int/dms_pubrec/itu-r/rec/tf/R-REC-TF.2018-0-201208-IMPDF-R.pdf, accessed 03.28.2014.

  11. N. P. Grushinskij, Theory of the Figure of the Earth, Nauka, Moscow (1976).

    Google Scholar 

  12. V. P. Sysoev et al., “Transportable quantum clock based on a hydrogen generator,” Metrology of Time and Space: Proc. 6th Int. Symp., VNIIFTRI, Moscow (2012), pp. 31–33.

  13. I. A. Andronov and G. B. Malykin, “Physical problems of a fiber gyroscope and the Sagnac effect,” Usp. Phys. Nauk, 172, No. 8, 849–873 (2002).

    Article  Google Scholar 

  14. N. Ashby, “Relativity in the Global Positioning System,” Liv. Rev. Relat., 6, 1–42 (2003).

    Google Scholar 

  15. N. K. Pavlis et al., “The development and evaluation of the Earth Gravitational Model 2008 (EGM2008),” J. Geophys. Res., 117, B04406 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Fateev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 8, pp. 31–35, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fateev, V.F., Sysoev, V.P. Relativistic Effects on Moving Clocks. Meas Tech 57, 891–897 (2014). https://doi.org/10.1007/s11018-014-0555-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-014-0555-4

Keywords

Navigation