Skip to main content

Advertisement

Log in

Investigation of major genetic alterations in neuroblastoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. This malignancy shows a wide spectrum of clinical outcome and its prognosis is conditioned by manifold biological and genetic factors. We investigated the tumor genetic profile and clinical data of 29 patients with NB by multiplex ligation-dependent probe amplification (MLPA) to assess therapeutic risk. In 18 of these tumors, MYCN status was assessed by fluorescence in situ hybridization (FISH). Copy number variation was also determined for confirming MLPA findings in two 6p loci. We found 2p, 7q and 17q gains, and 1p and 11q losses as the most frequent chromosome alterations in this cohort. FISH confirmed all cases of MYCN amplification detected by MLPA. In view of unexpected 6p imbalance, copy number variation of two 6p loci was assessed for validating MLPA findings. Based on clinical data and genetic profiles, patients were stratified in pretreatment risk groups according to international consensus. MLPA proved to be effective for detecting multiple genetic alterations in all chromosome regions as requested by the International Neuroblastoma Risk Group (INRG) for therapeutic stratification. Moreover, this technique proved to be cost effective, reliable, only requiring standard PCR equipment, and attractive for routine analysis. However, the observed 6p imbalances made PKHD1 and DCDC2 inadequate for control loci. This must be considered when designing commercial MLPA kits for NB. Finally, four patients showed a normal MLPA profile, suggesting that NB might have a more complex genetic pattern than the one assessed by presently available MLPA kits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120. https://doi.org/10.1016/S0140-6736(07)60983-0

    Article  PubMed  CAS  Google Scholar 

  2. Heck JE, Ritz B, Hung RJ et al (2009) The epidemiology of neuroblastoma: a review. Paediatr Perinat Epidemiol 23:125–143. https://doi.org/10.1111/j.1365-3016.2008.00983.x

    Article  PubMed  Google Scholar 

  3. de Camargo B, de Oliveira Ferreira JM, de Souza Reis R et al (2011) Socioeconomic status and the incidence of non-central nervous system childhood embryonic tumours in Brazil. BMC Cancer 11:160. https://doi.org/10.1186/1471-2407-11-160

    Article  PubMed  PubMed Central  Google Scholar 

  4. Irwin MS, Park JR (2015) Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am 62:225–256. https://doi.org/10.1016/j.pcl.2014.09.015

    Article  PubMed  Google Scholar 

  5. Brodeur GM, Iyer R, Croucher JL et al (2014) Therapeutic targets for neuroblastomas. Expert Opin Ther Targets 18:277–292. https://doi.org/10.1517/14728222.2014.867946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Abel F, Dalevi D, Nethander M et al (2011) A 6-gene signature identifies four molecular subgroups of neuroblastoma. Cancer Cell Int 11:9. https://doi.org/10.1186/1475-2867-11-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cheung N-KV, Dyer M (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13:397–411. https://doi.org/10.1038/nrc3526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Maris JM, Mosse YP, Bradfield JP et al (2008) Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl J Med 358:2585–2593. https://doi.org/10.1056/NEJMoa0708698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nguyễn LB, Diskin SJ, Capasso M et al (2011) Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility loci. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002026

    Article  PubMed  PubMed Central  Google Scholar 

  10. Diskin SJ, Capasso M, Diamond M et al (2014) Rare variants in TP53 and susceptibility to neuroblastoma. J Natl Cancer Inst 106:7–10. https://doi.org/10.1093/jnci/dju047

    Article  CAS  Google Scholar 

  11. Matthay KK, Maris JM, Schleiermacher G et al (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078. https://doi.org/10.1038/nrdp.2016.78

    Article  PubMed  Google Scholar 

  12. Schleiermacher G, Janoueix-Lerosey I, Delattre O (2014) Recent insights into the biology of neuroblastoma. Int J Cancer 135:2249–2261. https://doi.org/10.1002/ijc.29077

    Article  PubMed  CAS  Google Scholar 

  13. Louis CU, Shohet JM (2015) Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med 66:49–63. https://doi.org/10.1146/annurev-med-011514

    Article  PubMed  CAS  Google Scholar 

  14. Barbosa RH, Aguiar FCC, Silva MFL et al (2013) Screening of RB1 alterations in Brazilian patients with retinoblastoma and relatives with retinoma: phenotypic and genotypic associations. Invest Ophthalmol Vis Sci 54:3184–3194. https://doi.org/10.1167/iovs.13-11686

    Article  PubMed  CAS  Google Scholar 

  15. Ambros IM, Brunner B, Aigner G et al (2011) A multilocus technique for risk evaluation of patients with neuroblastoma. Clin Cancer Res 17:792–804. https://doi.org/10.1158/1078-0432.CCR-10-0830

    Article  PubMed  CAS  Google Scholar 

  16. Ambros PF, Ambros IM, Brodeur GM et al (2009) International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100:1471–1482. https://doi.org/10.1038/sj.bjc.6605014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2^-∆∆CT Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  18. Cohn SL, Pearson ADJ, London WB et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG task force report. J Clin Oncol 27:289–297. https://doi.org/10.1200/JCO.2008.16.6785

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bown N, Cotterill S, Lastowska M et al (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340:1954–1961. https://doi.org/10.1056/nejm199906243402504

    Article  PubMed  CAS  Google Scholar 

  20. Theissen J, Oberthuer A, Hombach A et al (2014) Chromosome 17/17q gain and unaltered profiles in high resolution array-CGH are prognostically informative in neuroblastoma. Genes Chromosom Cancer 53:639–649. https://doi.org/10.1002/gcc.22174

    Article  PubMed  CAS  Google Scholar 

  21. Kuzyk A, Booth S, Righolt C et al (2015) MYCN overexpression is associated with unbalanced copy number gain, altered nuclear location, and overexpression of chromosome arm 17q genes in neuroblastoma tumors and cell lines. Genes Chromosom Cancer 54:616–628. https://doi.org/10.1002/gcc.22273

    Article  PubMed  CAS  Google Scholar 

  22. Mandriota SJ, Valentijn LJ, Lesne L et al (2015) Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism. Oncotarget 6:18558–18576. https://doi.org/10.18632/oncotarget.4061

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hagenbuchner J, Kuznetsov AV, Obexer P, Ausserlechner MJ (2013) BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene 32:4748–4757. https://doi.org/10.1038/onc.2012.500

    Article  PubMed  CAS  Google Scholar 

  24. Hagenbuchner J, Kiechl-Kohlendorfer U, Obexer P, Ausserlechner MJ (2015) BIRC5/Survivin as a target for glycolysis inhibition in high-stage neuroblastoma. Oncogene 35:1–10. https://doi.org/10.1038/onc.2015.264

    Article  CAS  Google Scholar 

  25. Huang M, Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a014415

    Article  PubMed  PubMed Central  Google Scholar 

  26. Speleman F, Park JR, Henderson TO (2016) Neuroblastoma: a tough nut to crack. Am Soc Clin Oncol Educ Book 35:e548–e557. https://doi.org/10.14694/EDBK_159169

    Article  PubMed  Google Scholar 

  27. Villamón E, Berbegall AP, Piqueras M et al (2013) Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS ONE. https://doi.org/10.1371/journal.pone.0053740

    Article  PubMed  PubMed Central  Google Scholar 

  28. Michels E, Vandesompele J, De Preter K et al (2007) ArrayCGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosom Cancer 46:1098–1108. https://doi.org/10.1002/gcc.20496

    Article  PubMed  CAS  Google Scholar 

  29. Mazzocco K, Defferrari R, Sementa AR et al (2015) Genetic abnormalities in adolescents and young adults with neuroblastoma: a report from the Italian Neuroblastoma group. Pediatr Blood Cancer 62:1725–1732. https://doi.org/10.1002/pbc.25552

    Article  PubMed  CAS  Google Scholar 

  30. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15. https://doi.org/10.1016/S0959-8049(01)00231-3

    Article  PubMed  CAS  Google Scholar 

  31. Keller J, Nimnual AS, Varghese MS et al (2016) A novel EGFR extracellular domain mutant, EGFRdelta768, possesses distinct biological and biochemical properties in neuroblastoma. Mol Cancer Res 1–13. https://doi.org/10.1158/1541-7786.MCR-15-0477

  32. Shostak K, Chariot A (2015) EGFR and NF-κB: partners in cancer. Trends Mol Med 21:385–393. https://doi.org/10.1016/j.molmed.2015.04.001

    Article  PubMed  CAS  Google Scholar 

  33. Knuutila S, Björkqvist AM, Autio K et al (1998) DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol 152:1107–1123

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Santos GC, Zielenska M, Prasad M, Squire JA (2007) Chromosome 6p amplification and cancer progression. J Clin Pathol 60:1–7. https://doi.org/10.1136/jcp.2005.034389

    Article  PubMed  CAS  Google Scholar 

  35. Plantaz D, Mohapatra G, Matthay KK et al (1997) Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Am J Pathol 150:81–89

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216. https://doi.org/10.1038/nrc1014

    Article  PubMed  CAS  Google Scholar 

  37. Braekeveldt N, Wigerup C, Tadeo I et al (2016) Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours. Cancer Lett 375:384–389. https://doi.org/10.1016/j.canlet.2016.02.046

    Article  PubMed  CAS  Google Scholar 

  38. van Eijk R, Eilers PH, Natté R et al (2010) MLPAinter for MLPA interpretation: an integrated approach for the analysis, visualisation and data management of Multiplex Ligation-dependent Probe Amplification. BMC Bioinf 11:67. https://doi.org/10.1186/1471-2105-11-67

    Article  CAS  Google Scholar 

  39. Fischer M, Bauer T, Oberthür a et al (2010) Integrated genomic profiling identifies two distinct molecular subtypes with divergent outcome in neuroblastoma with loss of chromosome 11q. Oncogene 29:865–875. https://doi.org/10.1038/onc.2009.390

    Article  PubMed  CAS  Google Scholar 

  40. Spitz R, Hero B, Ernestus K, Berthold F (2003) Deletions in chromosome arms 3p and 11q are new prognostic markers in localized and 4 s neuroblastoma. Clin Cancer Res 9:52–58

    PubMed  CAS  Google Scholar 

  41. Carén H, Kryh H, Nethander M et al (2010) High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci USA 107:4323–4328. https://doi.org/10.1073/pnas.0910684107

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cetinkaya C, Martinsson T, Sandgren J et al (2013) Age dependence of tumor genetics in unfavorable neuroblastoma: arrayCGH profiles of 34 consecutive cases, using a Swedish 25-year neuroblastoma cohort for validation. BMC Cancer 13:1. https://doi.org/10.1186/1471-2407-13-231

    Article  CAS  Google Scholar 

  43. Owens C, Irwin M (2012) Neuroblastoma: the impact of biology and cooperation leading to personalized treatments. Crit Rev Clin Lab Sci 49:85–115. https://doi.org/10.3109/10408363.2012.683483

    Article  PubMed  CAS  Google Scholar 

  44. Fujita T, Igarashi J, Okawa ER et al (2008) CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst 100:940–949. https://doi.org/10.1093/jnci/djn176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Koyama H, Zhuang T, Light JE et al (2012) Mechanisms of CHD5 inactivation in neuroblastomas. Clin Cancer Res 18:1588–1597. https://doi.org/10.1158/1078-0432.CCR-11-2644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Maris JM, Weiss MJ, Guo C et al (2000) Loss of heterozygosity at 1p36 independently predicts for disease progression but not decreased overall survival probability in neuroblastoma patients: a children’s cancer group study. J Clin Oncol 18:1888–1899. https://doi.org/10.1200/jco.2000.18.9.1888

    Article  PubMed  CAS  Google Scholar 

  47. Attiyeh EF, London WB, Mossé YP et al (2005) Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353:2243–2253. https://doi.org/10.1056/NEJMoa052399

    Article  PubMed  CAS  Google Scholar 

  48. Kolla V, Zhuang T, Higashi M et al (2014) Role of CHD5 in human cancers: 10 years later. Cancer Res 74:652–658. https://doi.org/10.1158/0008-5472.CAN-13-3056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work supported by Conselho Nacional de Ciência e Tecnologia (CNPq; Grant 573806/2008-0) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ; Grant E26/170.026/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor N. Seuánez.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, R.A., Seuánez, H. Investigation of major genetic alterations in neuroblastoma. Mol Biol Rep 45, 287–295 (2018). https://doi.org/10.1007/s11033-018-4161-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4161-4

Keywords

Navigation