Skip to main content
Log in

Marker-less registration based on template tracking for augmented reality

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Accurate 3D registration is a key issue in the Augmented Reality (AR) applications, particularly where are no markers placed manually. In this paper, an efficient markerless registration algorithm is presented for both outdoor and indoor AR system. This algorithm first calculates the correspondences among frames using fixed region tracking, and then estimates the motion parameters on projective transformation following the homography of the tracked region. To achieve the illumination insensitive tracking, the illumination parameters are solved jointly with motion parameters in each step. Based on the perspective motion parameters of the tracked region, the 3D registration, the camera’s pose and position, can be calculated with calibrated intrinsic parameters. A marker-less AR system is described using this algorithm, and the system architecture and working flow are also proposed. Experimental results with comparison quantitatively demonstrate the correctness of the theoretical analysis and the robustness of the registration algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Azuma R, Hoff B, Neely H (1999) A motion-stabilized outdoor augmented reality system. Proc IEEE Virtual Reality, Los Alamitos. IEEE, California, pp 252–259

    Google Scholar 

  2. Azuma R, Baillot Y et al (2001) Recent advances in augmented reality, computer graphics and applications. IEEE Comput Graph Appl 21(6):34–47 doi:10.1109/38.963459

    Article  Google Scholar 

  3. Bajura M, Henry F, Ohbuchi R (1992) Merging virtual reality with the real world: seeing ultrasound imagery within the patient. Proceedings of SIGGRAPH'92 (Chicago, IL). Comput Graph (ACM) 26(2):203–210 doi:10.1145/142920.134061

    Article  Google Scholar 

  4. Behringer R (1999) Registration for outdoor augmented reality applications using computer vision techniques and hybrid sensors. Proc IEEE Virtual Real 13–17:244–251 (March)

    Google Scholar 

  5. Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26(1):63–84 doi:10.1023/A:1007939232436

    Article  Google Scholar 

  6. Bobick AF, Wilson AD (1995) A state-based technique for the summarization of recognition of gesture. Proc. Proceedings of International Conference on Computer Vision, 382–388

  7. Chen J, Shi Q, Wang Y (2001) AR technology and applications. Comput Engineer Application 37(21):55–57

    Google Scholar 

  8. Darrell T, Moghaddam B, Pentland A (1996) Active face tracking and pose estimation in an interactive room. Proceedings of IEEE Conf. Computer Vision and Pattern Recognition 67–72

  9. Dorfmuller K (1999) Robust tracking for augmented reality using retroreflective markers. Comput Graph 23(6):795–800 doi:10.1016/S0097-8493(99)00105-3

    Article  Google Scholar 

  10. Hager GD, Bellumeur PN (1996) Real-time tracking of image regions with changes in geometry and illumination. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 403–410

  11. Hu X, Liu Y, Wang Y (2005) Autocalibration of an electronic compass for augmented reality. Proc of IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR) 1:182–183

    Google Scholar 

  12. Hutchinson S, Hager GD, Corke P (1996) A tutorial introduction to visual servo control. IEEE Trans Robot Autom 12(5):651–670 doi:10.1109/70.538972

    Article  Google Scholar 

  13. Jafari S, Jarvis R (2005) Robotic eye-to-hand coordination: implementing visual perception to object manipulation. Int J Hybrid Intell Syst 2(4):269–293

    MATH  Google Scholar 

  14. Kutulakos KN, Vallino JR (1998) Calibration-free augmented reality. IEEE Trans Vis Comput Graph 4(1):1–20 doi:10.1109/2945.675647

    Article  Google Scholar 

  15. La Cascia M, Sclaroff S, Athitsos V (2000) Fast, reliable head tracking under varying illumination: an approach based on registration of textured-mapped 3D models. IEEE Trans Pattern Anal Mach Intell 22(4):322–336 doi:10.1109/34.845375

    Article  Google Scholar 

  16. Li X, Liu Y, Wang Y et al (2005) An improved colored-marker based registration method for AR applications. Lect Notes Comput Sci 3482:266–273

    Article  Google Scholar 

  17. Li Y, Wang Y, Liu Y (2007) Fiducial marker based on projective invariant for augmented reality. J Comput Sci Technol 22(6):890–897 doi:10.1007/s11390-007-9100-0

    Article  MathSciNet  Google Scholar 

  18. Lin L, Liu Y, Zheng W, Wang Y (2006) Registration algorithm based on image matching for outdoor AR system with fixed viewing position. IEE Proc, Vis Image Signal Process 153(1):57–62 doi:10.1049/ip-vis:20045181

    Article  Google Scholar 

  19. Okuma T, Sakaue K, Takemura H, Yokoya N (2000) Real-time camera parameter estimation from images for a mixed reality system. Proc Int Conf Pattern Recognit 4:4482–4486

    Google Scholar 

  20. Ribo M, Pinz A, Fuhrmann A (2001) A new optical tracking system for virtual and augmented reality applications. Instrum Meas Tech Conf 3:1932–1936

    Google Scholar 

  21. Shi J, Tomasi C (1994) Good features to track. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'94), 593–600

  22. Tang S-L, Kwoh C-K et al (1998) Augmented reality systems for medical applications. Eng Med Biol Mag 17(3):49–58 doi:10.1109/51.677169

    Article  Google Scholar 

  23. Uenohara M, Kanade T (1995) Vision-based object registration for real-time image overlay. Int J Comput Biol Med 25(2):249–260 doi:10.1016/0010-4825(94)00045-R

    Article  Google Scholar 

  24. You S, Neumann U (2001) Fusion of vision and gyro tracking for robust augmented reality registration. Proc IEEE Virtual Real 2001:71–78 doi:10.1109/VR.2001.913772

    Article  Google Scholar 

  25. Zagoranski S, Divjak S (2003) Use of augmented reality in education, EUROCON 2003, Computer as a Tool, The IEEE Region 8, 22–24 Sept. 2003, Vol. 2: 339–342

Download references

Acknowledgements

This project is supported by National Basic Research Program of China (National 863 Program, Grant No. 2006AA01Z339), National Natural Science Foundation of China (Grant No. 60673198), and China Postdoctoral Science Foundation funded project (Grant No. 20080430313). The author would like to thank Ke Yang for contributive comments and assistance in experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L., Wang, Y., Liu, Y. et al. Marker-less registration based on template tracking for augmented reality. Multimed Tools Appl 41, 235–252 (2009). https://doi.org/10.1007/s11042-008-0227-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-008-0227-y

Keywords

Navigation