Skip to main content
Log in

One-step synthesis of monodisperse AuNPs@PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Oxidative polymerization of aniline was carried out in ethanol using chloroauric acid (HAuCl4) as the oxidant. Simultaneous reduction of HAuCl4 and formation of gold nanoparticles (AuNPs) and polyaniline (PANI) composite nanospheres (AuNPs@PANI nanospheres) were achieved without using any templates or structure-directing agents. The composite nanospheres are uniformly distributed with an average diameter of about 400 nm, in which the ultrafine AuNPs with size of about 2–4 nm were evenly embedded in the PANI matrix which acted as the dispersing agent and stabilizer of AuNPs. In addition, the catalytic performance of these composite nanospheres towards the reduction of 4-nitrophenol in the presence of NaBH4 was studied. Furthermore, the possible formation mechanism and catalytic mechanism of the self-assembled AuNPs@PANI nanospheres were also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker CO, Shedd B, Tseng RJ, Martinez-Morales AA, Ozkan CS, Ozkan M, Yang Y, Kaner RB (2011) Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices. ACS Nano 5:3469–3474

    Article  Google Scholar 

  • Carabineiroa SAC, Martinsb LMDRS, Avalos-Borja M, Buijnsters JG, Pombeiro AJL, Figueiredo JL (2013) Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Appl Catal A 467:279–290

    Article  Google Scholar 

  • Choudhary T, Goodman D (2002) Oxidation catalysis by supported gold nano-clusters. Top Catal 21:25–34

    Article  Google Scholar 

  • Dong C, Li J, Cui P, Liu H, Yang J (2016) Gold-catalyzed formation of core–shell gold–palladium nanoparticles with palladium shells up to three atomic layers. J Mater Chem A 4:3813–3821

    Article  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy C, El-Sayed M (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  Google Scholar 

  • Dutt S, Siril PF, Sharma V, Periasamy S (2015) Goldcore–polyanilineshell composite nanowires as a substrate for surface enhanced Raman scattering and catalyst for dye reduction. New J Chem 39:902–908

    Article  Google Scholar 

  • Feng JJ, Li AQ, Lei Z, Wang AJ (2012) Low-potential synthesis of “clean” Au nanodendrites and their high performance toward ethanol oxidation. ACS Appl Mater Interfaces 4:2570–2576

    Article  Google Scholar 

  • Han J, Liu Y, Guo R (2009) Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J Am Chem Soc 131:2060–2061

    Article  Google Scholar 

  • Han J, Li L, Guo R (2010) Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers. Macromolecules 43:10636–10644

    Article  Google Scholar 

  • Han J, Dai J, Li L, Fang P, Guo R (2011) Highly uniform self-assembled conducting polymer/gold fibrous nanocomposites: additive-free controllable synthesis and application as efficient recyclable catalysts. Langmuir 27:2181–2187

    Article  Google Scholar 

  • Han J, Fang P, Dai J, Guo R (2012) One-pot surfactantless route to polyaniline hollow nanospheres with incontinuous multicavities and application for the removal of lead ions from water. Langmuir 28:6468–6475

    Article  Google Scholar 

  • Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  Google Scholar 

  • Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  • Huang K, Zhang Y, Long Y, Yuan J, Han D, Wang Z, Niu L, Chen Z (2006) Preparation of highly conductive, self-assembled gold/polyaniline nanocables and polyaniline nanotubes. Chem A 12:5314–5319

    Google Scholar 

  • Huang J, Vongehr S, Tang S, Lu H, Shen J, Meng X (2009) Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 25:11890–11896

    Article  Google Scholar 

  • Huang YF, Park YI, Kuo C, Xu P, Williams DJ, Wang J, Lin CW, Wang HL (2012) Low-temperature synthesis of Au/polyaniline nanocomposites: toward controlled size, morphology, and size dispersity. J Phys Chem C 116:11272–11277

    Article  Google Scholar 

  • Ishida T, Aikawa S, Mise Y, Akebi R, Hamasaki A, Honma T, Ohashi H, Tsuji T, Yamamoto Y, Miyasaka M, Yokoyama T, Tokunaga M (2015) Direct C–H arene homocoupling over gold nanoparticles supported on metal oxides. ChemSusChem 8:695–701

    Article  Google Scholar 

  • Jiang HL, Akita T, Ishida T, Haruta M, Xu Q (2011) Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J Am Chem Soc 133:1304–1306

    Article  Google Scholar 

  • Joseph D, Tyagi N, Geckeler C, Geckeler KE (2014) Protein-coated pH-responsive gold nanoparticles: microwave-assisted synthesis and surface charge-dependent anticancer activity. Beilstein J Nanotechnol 5:1452–1462

    Article  Google Scholar 

  • Kang E, Neoh K, Tan K (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  Google Scholar 

  • Korotcenkov G, Brinzari V, Cho B (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183:1033–1054

    Article  Google Scholar 

  • Lam E, Hrapovic S, Majid E, Chong JH, Luong JH (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4:997–1002

    Article  Google Scholar 

  • Laveille P, Guillois K, Tuel A, Petit C, Basset JM, Caps V (2016) Durable PROX catalyst based on gold nanoparticles and hydrophobic silica. Chem Commun 52:3179–3182

    Article  Google Scholar 

  • Li XG, Duan W, Huang MR, Yang YL (2001) Preparation and characterization of soluble terpolymers from m-phenylenediamine, o-anisidine, and 2,3-xylidine. J Polym Sci Part A 39:3989–4000

    Article  Google Scholar 

  • Li Y, Shi W, Chopra N (2016) Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100:165–177

    Article  Google Scholar 

  • Lin FH, Doong R-A (2011) Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598

    Article  Google Scholar 

  • Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S (2011) Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed 50:6799–6802

    Article  Google Scholar 

  • Liu G, Li Q, Ni W, Zhang N, Zheng X, Wang Y, Shao D, Tai G (2015) Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells. Int J Nanomed 10:6075–6087

    Google Scholar 

  • Lozano-Martín MC, Castillejos E, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A (2015) Selective 1,3-butadiene hydrogenation by gold nanoparticles on novelnano-carbon materials. Catal Today 249:117–126

    Article  Google Scholar 

  • Luechinger NA, Athanassiou EK, Stark WJ (2008) Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19:445201

    Article  Google Scholar 

  • Maji S, Cesur B, Zhang Z, De Geest BG, Hoogenboom R (2016) Poly(N-isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors. Polym Chem 7:1705–1710

    Article  Google Scholar 

  • Nakashima D, Marken F, Oyama M (2013) Indirect modification of glassy carbon with gold nanoparticles using nonconducting support materials. Electroanalysis 25:975–982

    Article  Google Scholar 

  • Neoh K, Kang E, Tan K (1993) Protonation and deprotonation behaviour of amine units in polyaniline. Polymer 34:1630–1636

    Article  Google Scholar 

  • Padbury RP, Halbur JC, Krommenhoek PJ, Tracy JB, Jur JS (2015) Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates. Langmuir 31:1135–1141

    Article  Google Scholar 

  • Peng S, Lee Y, Wang C, Yin H, Dai S, Sun S (2008) A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res 1:229–234

    Article  Google Scholar 

  • Percebom AM, Giner-Casares JJ, Claes N, Bals S, Loh W, Luis M, Liz-Marza´n LM (2016) Janus gold nanoparticles obtained via spontaneous binary polymer shell segregation. Chem Commun 52:4278–4281

    Article  Google Scholar 

  • Qiao X, Liu X, Li X, Xing S (2015) Anchoring gold nanoparticles inside polyaniline shells with magnetic cores for the enhancement of catalytic stability. New J Chem 39:8588–8593

    Article  Google Scholar 

  • Quan X, Peng CW, Dong J, Zhou J (2016) Structural properties of polymer-brush-grafted gold nanoparticles at the oil–water interface: insights from coarse-grained simulations. Soft Matter 12:3352–3359

    Article  Google Scholar 

  • Rana D, Jamwal D, Katoch A, Thakur P, Kalia S (2016) Eicosyl ammoniums elicited thermal reduction alleyway towards gold nanoparticles and their chemo-sensor aptitude. Analyst 141:2208–2217

    Article  Google Scholar 

  • Schlicke H, Rebber M, Kunze S, Vossmeyer T (2016) Resistive pressure sensors based on freestanding membranes of gold nanoparticles. Nanoscale 8:183–186

    Article  Google Scholar 

  • Schürmann R, Bald I (2016) Decomposition of DNA nucleobases by laser irradiation of gold nanoparticles monitored by surface-enhanced Raman scattering. J Phys Chem C 120:3001–3009

    Article  Google Scholar 

  • Shi J, Wu Q, Li R, Zhu Y, Qin Y, Qiao C (2013) The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres. Nanotechnology 24:175602

    Article  Google Scholar 

  • Shiigi H, Yamamoto Y, Yoshi N, Nakao H, Nagaoka T (2006) One-step preparation of positively-charged gold nanoraspberry. Chem Commun 41:4288–4290

    Article  Google Scholar 

  • Shin HS, Huh S (2012) Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes. ACS Appl Mater Interfaces 4:6324–6331

    Article  Google Scholar 

  • Simenyuk GY, Zakharov YA, Pavelko NV, Dodonov VG, Pugachev VM, Puzynin AV, Manina TS, Barnakov CN, Ismagilov ZR (2015) Highly porous carbon materials filled with gold and manganese oxidenanoparticles for electrochemical use. Catal Today 249:220–227

    Article  Google Scholar 

  • Stejskal J, Sapurina I, Trchová M, Konyushenko EN (2008) Oxidation of aniline: polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41:3530–3536

    Article  Google Scholar 

  • Tokonami S, Morita N, Takasaki K, Toshima N (2010) Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles. J Phys Chem C 114:10336–10341

    Article  Google Scholar 

  • Tseng RJ, Huang J, Ouyang J, Kaner RB, Yang Y (2005) Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett 5:1077–1080

    Article  Google Scholar 

  • Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of Au clusters stabilized by poly (N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093

    Article  Google Scholar 

  • Wang Y, Van de Vyver S, Sharma KK, Román-Leshkov Y (2014) Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16:719–726

    Article  Google Scholar 

  • Wang S, Xin X, Zhang H, Shen J, Zheng Y, Song Z, Yang Y (2016) Stable monodisperse colloidal spherical gold nanoparticles formed by an imidazolium gemini surfactant-based water-in-oil microemulsion with excellent catalytic performance. RSC Adv 6:28156–28164

    Article  Google Scholar 

  • Wei H, Lu Y (2012) Catalysis of gold nanoparticles within lysozyme single crystals. Chem Asian J 7:680–683

    Article  Google Scholar 

  • Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233

    Article  Google Scholar 

  • Xiang Q, Zhu X, Chen Y, Duan H (2016) Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap. Nanotechnology 27:075201

    Article  Google Scholar 

  • Xie HN, Lin Y, Mazo M, Chiappini C, Sánchez-Iglesias A, Liz-Marzán LM, Stevens MM (2014) Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale 6:12403–12407

    Article  Google Scholar 

  • Xu X, Liu X, Yu Q, Wang W, Xing S (2012) Architecture-adapted raspberry-like gold@polyaniline particles: facile synthesis and catalytic activity. Colloid Polym Sci 290:1759–1764

    Article  Google Scholar 

  • Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112

    Article  Google Scholar 

  • Zhang B, Zhao B, Huang S, Zhang R, Xu P, Wang HL (2012) One-pot interfacial synthesis of Au nanoparticles and Au–polyaniline nanocomposites for catalytic applications. CrystEngComm 14:1542–1544

    Article  Google Scholar 

  • Zhang J, Li C, Zhang X, Huo S, Jin S, An FF, Wang X, Xue X, Okeke CI, Duan G, Guo F, Zhang X, Hao J, Wang PC, Zhang J, Liang XJ (2015) In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 42:103–111

    Article  Google Scholar 

  • Zhang Z, Jiang Y, Chi M, Yang Z, Nie G, Xiaofeng L, Wang C (2016) Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties. Appl Surf Sci 363:578–585

    Article  Google Scholar 

  • Zhao G, Xin-Ping W, Chai R, Zhang Q, Gong X, Huang J, Yong L (2015) Tailoring nano-catalysts: turning gold nanoparticles on bulk metal oxides to inverse nano-metal oxides on large gold particles. Chem Commun 51:5975–5978

    Article  Google Scholar 

  • Zyuzin MV, Honold T, Carregal-Romero S, Kantner K, Karg M, Parak WJ (2016) Influence of temperature on the colloidal stability of polymer-coated gold nanoparticles in cell culture media. Small 12:1723–1731

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Grant No. 21073054), Natural Science Foundation of Henan Province (Grant No. 102300410180), the Natural Science Foundation of the Education Department of Henan Province (Grant No. 0001F01124), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (C20150011) and the Foundation for University Young Key Teacher by Henan Province (Grant No. 2009GGJS-021). We also thank Professor Suat Hong Goh, Hardy S. O. Chan and Chorng-Haur Sow at the National University of Singapore for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Li, Z., Wu, Q. et al. One-step synthesis of monodisperse AuNPs@PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction. J Nanopart Res 18, 142 (2016). https://doi.org/10.1007/s11051-016-3452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3452-8

Keywords

Navigation