Skip to main content

Advertisement

Log in

Prospecting for Clinoptilolite-Type Zeolite in a Volcano-Sedimentary Terrain Using ASTER Data: A Case Study from Alborz Mountains, Northern Iran

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Zeolites are hydrated alumino-silicates of alkali metals and alkaline earth cations which occur in sedimentary and volcano-sedimentary terrains. In this study, visible–near-infrared and shortwave infrared data of ASTER were evaluated in prospecting for zeolite in part of the green tuff belt of the Alborz Mountains, northern Iran. The study area is dominantly covered by sedimentary and volcano-sedimentary rocks, in which zeolite minerals occur only in the Late Eocene vitric tuff. Principal components (PC) analysis and spectral information divergence (SID) were used to discriminate and map the sedimentary and volcano-sedimentary units and the zeolite-rich areas, respectively. The X-ray diffraction and reflectance spectroscopy results indicated that clinoptilolite is the major type of zeolite mineral in this area. Comparing a color composite image, produced from PC images 1–3–5 as R–G–B, with the published geological map and the field investigations indicated that major sedimentary and volcano-sedimentary units as well as their alluvial deposits were discriminated efficiently. Results of the SID method, using an image-derived spectrum of clinoptilolite as a reference, showed good agreements with the field observations. The results of this study indicated that ASTER data are useful for discriminating various sedimentary and volcano-sedimentary units as well as clinoptilolite-type zeolite-rich areas in arid and semiarid terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, J. B., & Gillespie, A. R. (2006). Remote sensing of landscapes with spectral images, a physical modeling approach (1st ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Agar, B., & Coulter, D. (2007). Remote Sensing for mineral exploration. A decade perspective 1997–2007. In Proceedings of exploration 07: fifth decennial international conference on mineral exploration (pp. 109–136).

  • Ahmadirouhani, R., & Samiee, S. (2014). Mapping glauconite units with using remote sensing techniques in north east of Iran. The international archives of the photogrammetry, remote sensing and spatial information sciences, Volume XL-2/W3. In: The 1st ISPRS international conference on geospatial information research, 15–17 November 2014, Tehran, Iran.

  • Alimohammadi, M., Alirezaei, S., & Kontak, D. J. (2015). Application of ASTER data for exploration of porphyry copper deposits: a case study of Daraloo-Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews, 70, 290–304.

    Article  Google Scholar 

  • Asiabanha, A., & Foden, J. (2012). Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos, 148, 98–111.

    Article  Google Scholar 

  • Ayoobi, I., & Tangestani, M. H. (2017). Evaluation of relative atmospheric correction methods on ASTER VNIR–SWIR data in playa environment. Carbonates and Evaporites, 32(4), 539–546.

    Article  Google Scholar 

  • Bazargani-Guilani, K., & Rezaei, S. (2008). Mineralogy and genesis of zeolitic succession of Sartakht area, SE—Semnan, north Central Iran. Tehran University Journal of Science, 2, 64–73. (in Persian).

    Google Scholar 

  • Berberian, F., & Berberian, M. (1981). Tectono–plutonic episodes in Iran. In: Geological Survey of Iran, Report 52, pp. 566–593.

  • Berberian, F., Muir, I. D., Pankhurst, R. J., & Berberian, M. (1982). Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and central Iran. Journal of the Geological Society, 139(5), 605–614.

    Article  Google Scholar 

  • Bertsch, L., & Habgood, H. W. (1963). An infrared spectroscopic study of the adsorption of water and carbon dioxide by Linde Molecular Sieve X. Journal of Physical Chemistry, 67, 1621–1628.

    Article  Google Scholar 

  • Bishop, J. L., Pieters, C. M., & Edwards, J. O. (1994). Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays and Clay Minerals, 6, 702–716.

    Article  Google Scholar 

  • Castro Godoy, S. E., Cozzi, G., Ubaldón, M. C., Donnari, E., & Wright, E. M. (2017). Detection of zeolite with ASTER in stone stop-Buitrera, middle Chubut river, province of Chubut [Detección de Zeolitas con ASTER en Piedra Parada - La Buitrera, río Chubut medio, provincia del Chubut]. Serie Correlacion Geologica, 33(1–2), 61–72.

    Google Scholar 

  • Chang, C.-I. (1999). Spectral information divergence for hyperspectral image analysis. In Geoscience and remote sensing symposium, 1999. IGARSS ’99 Proceedings. IEEE 1999 International, 1 (pp. 509–511).

  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95, 12653–12680.

    Article  Google Scholar 

  • Clark, R. N., Swayze, G. A., Gallagher, A. J., Gorelick, N., & Kruse, F. (1991). Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. In R. O. Green (Ed.), Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, Jet Propulsion Laboratory Publication 91-28 (pp. 2–3).

  • Clark, R. N., Swayze, G. A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., & Sutley, S. J. (2007). USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231. http://speclab.cr.usgs.gov/spectral.lib06.

  • Cloutis, E. A., Asher, P. M., & Mertzm, S. A. (2002). Spectral reflectance properties of zeolites and remote sensing implications. Journal of Geophysical Research, 107(E9), 5067. https://doi.org/10.1029/2000JE001467.

    Article  Google Scholar 

  • Congalton, R. (1991). A review of the assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  • Crosta, A. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240.

    Article  Google Scholar 

  • de Jong, S. M., & van der Meer, F. D. (2004). Remote sensing image analysis: including the spatial domain. Remote sensing and digital image processing (Vol. 5). Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Evans, A. H. (1993). Ore geology and industrial minerals (3rd ed.). Oxford: Blackwell Scientific.

    Google Scholar 

  • Fujisada, H. (1995). Design and performance of the ASTER instrument. In Proceedings of SPIE. The International Society for Optical Engineering, 2583, pp. 16–25.

  • Gaffney, E. S., Singer, R. B., & Kunkie, T. D. (1984). Zeolites on mars: Prospects for remote sensing, in reports of the planetary geology and geophysics program 1984 (p. 397). Washington, D. C.: NASA.

    Google Scholar 

  • Gottardi, G., & Galli, E. (1985). Natural zeolites. New York: Springer.

    Book  Google Scholar 

  • Hassanzadeh, J., Ghazi, A. M., Axen, G., & Guest, B. (2002). Oligomiocene mafic-alkaline magmatism north and northwest of Iran: Evidence for the separation of the Alborz from the Urumieh-Dokhtar magmatic arc. Geological Society of America Abstracts with Programs, 34(6), 331.

    Google Scholar 

  • Hay, R. L. (1977). Geology of zeolites in sedimentary rocks. In F. A. Mumpton (Ed.), Mineralogy and geology of natural zeolites. Chelsea. Mineralogical Society of America, 4, pp. 53–63.

  • Hosseinjani Zadeh, M., Tangestani, M. H., Roldan, F. V., & Yusta, I. (2014). Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geology Reviews, 66, 191–198.

    Article  Google Scholar 

  • Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513.

    Article  Google Scholar 

  • Hunt, G. R., & Salisbury, J. W. (1970). Visible and near-infrared spectra of minerals and rocks. I. Silicate minerals. Modern Geology, 1, 283–300.

    Google Scholar 

  • Iijima, A. (1980). Geology of natural zeolites and zeolitic rocks. In L. V. C. Rees (Ed.), Proceedings, 5th international conference on zeolites. Pure Applied Chemistry, 52, pp. 2115–2130.

  • Kazemian, H. (2002). Zeolite science in Iran: A brief review. In Zeolite ‘02, 6th international conference on the occurrence, properties and utilization of natural zeolites, Thessaloniki, Greece (pp. 162–163).

  • Kenea, N. H., & Haenisch, H. (1996). Principal component analyses for lithological and alteration mapping. Example from the Red sea Hills, Sudan. International Archive of Photogrammetry and Remote Sensing, XXXI, 271–275.

    Google Scholar 

  • Khalili, M., Makizadeh, M. A., & Taghipour, B. (2005). Evaporitic zeolites in Central Alborz, north of Iran. Carbonates and Evaporites, 20, 34–41. https://doi.org/10.1007/BF03175446.

    Article  Google Scholar 

  • Kruse, F. A. (1988). Use of Airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada and California. Remote Sensing of Environment, 24, 31–51.

    Article  Google Scholar 

  • Langella, A., Cappelletti, P., & de’ Gennaro, M. (2001). Zeolites in closed hydrologic systems. In D. L., Bish, & D. W. Ming (Eds.), Natural zeolites: Occurrence, properties, applications. In: Reviews in Mineralogy and Geochemistry, vol. 45. Mineralogical Society of America, 45 (pp. 235–260).

  • Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2, 161–186.

    Article  Google Scholar 

  • Noetstaller, R. (1988). Industrial minerals, a technical review (Vol. 76). Washington, D.C.: World Bank.

    Google Scholar 

  • Oztan, N. S., & Suzen, M. L. (2011). Mapping evaporate minerals by ASTER. International Journal of Remote Sensing, 32(6), 1651–1673.

    Article  Google Scholar 

  • Rajendran, R., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., et al. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44, 121–135.

    Article  Google Scholar 

  • Rajendran, R., & Nasir, S. (2017). Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geology Reviews, 88, 317–335.

    Article  Google Scholar 

  • Sabins, F. F. (1987). Remote sensing principles and interpretation. New York: W.H. Freeman and Company.

    Book  Google Scholar 

  • Sanjeevi, S. (2008). Targeting limestone and bauxite deposits in Southern India by spectral unmixing of hyperspectral image data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing 2008.

  • Sheppared, R. A., & Gude, A. J., III. (1968). Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene lake Tecopa, Inyo Country, California. US Geological Survey Professional Paper, 597, 38.

    Google Scholar 

  • Soltaninejad, A., Ranjbar, H., Honarmand, M., & Dargahi, S. (2018). Evaporite mineral mapping and determining their source rocks using remote sensing data in Sirjan playa, Kerman, Iran. Carbonates and Evaporites, 33(2), 255–274.

    Article  Google Scholar 

  • Taghipour, B., & Mackizadeh, M. (2012). Geological environment of the zeolite origin in the Central Alborz. Neues Jahrbuch Fur Geologie und palaontologie, 256, 235–248.

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2002). Porphyry copper alteration mapping at the Meiduk area, Iran. International Journal of Remote Sensing, 23(22), 4815–4825.

    Article  Google Scholar 

  • Volesky, J. C., Stern, R. J., & Johnson, P. R. (2003). Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies. Precambrian Research, 123, 235–247. https://doi.org/10.1016/s0301-9268(03)00070-6.

    Article  Google Scholar 

  • Vural, A., Corumluoglu, O., & Asri, I. (2016). Exploring Gordes zeolite by feature oriented principle component analysis of LANDSAT images. Caspian Journal of Environmental Science, 14(4), 285–298.

    Google Scholar 

Download references

Acknowledgments

We would like to express our appreciation to Mark van der Meijde, Caroline Lievens, and Wim H. Bakker for their constructive comments and suggestions. Also, we would like to thank Mr. Mehran Rajabi, from Afrazand zeolite Company, for his help during the field work and also to Department of Earth Systems Analysis, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadijeh Validabadi Bozcheloei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Validabadi Bozcheloei, K., Tangestani, M.H. Prospecting for Clinoptilolite-Type Zeolite in a Volcano-Sedimentary Terrain Using ASTER Data: A Case Study from Alborz Mountains, Northern Iran. Nat Resour Res 28, 1317–1327 (2019). https://doi.org/10.1007/s11053-019-09452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09452-1

Keywords

Navigation