Skip to main content

Advertisement

Log in

Application of GMOs in the U.S.: EPA research & regulatory considerations related to soil systems

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

During the last 20 years recombinant biotechnology has resulted in the development of organisms with unique genetic compositions, some of which are for intentional release to the environment. While concerns have been raised that such organisms may be capable of inducing transient unintended environmental effects, longer-term perturbations to soil processes and non-target species effects have yet to be demonstrated. In parallel with the growth of the commercial biotechnology industry has come a significant growth in regulatory review processes intended to evaluate the risks of these GMO products. Under the Toxic Substances Control Act (TSCA), certain new microbial products that undergo pre-manufacture review are examined for human and environmental risks using data and other information received in accordance with the U.S. Environmental Protection Agency’s (EPA’s) “Points to Consider” guidance document. In the risk assessment process, carried out under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Federal Food, Drug and Cosmetic Act (FFDCA) authorities, EPA evaluates both microbial pesticide products and plants with pesticidal properties to determine if Federal safety standards are met. For all pesticide products, including genetically engineered pesticides, EPA receives testing of product composition and chemical properties, human health effects, environmental effects on non-target pests, and the fate of the pesticide in the environment. The EPA’s Office of Research and Development supports risk assessment research related to such GMO products. This paper focuses on relevant EPA research and regulatory examples related to soil effects considerations for GMOs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A K Bej M Perlin R M Atlas (1991) ArticleTitleEffect of introducing genetically engineered microorganisms on soil microbial community diversity FEMS Microbiol. Ecol. 86 169–176 Occurrence Handle10.1016/0378-1097(91)90662-T

    Article  Google Scholar 

  • S Borkin (1982) ArticleTitleNotes on shifting distribution patterns and survival of immature Danaus plexxipus (Lepidoptera: Danaidae) on the food plant Asclepias syriaca Great Lakes Entomol. 15 199–206

    Google Scholar 

  • Buscot F, Kaldorf M, Fladung M and Muhs H 2001 Establishment of mycorrhizas on rolC-transgenic aspen in a field trial. In ICOM3, Third International Conference on

  • Mycorrhizas, Adelaide, Australia, July 10–13, 2001

  • C R Cisar F W Spiegel D O TeBeest C Trout (1994) ArticleTitleEvidence for mating between isolates of Colletrotrichum gloeosporioides with different host specificities Curr. Genet. 25 330–335 Occurrence Handle7915968 Occurrence Handle1:CAS:528:DyaK2cXksFeksL4%3D Occurrence Handle10.1007/BF00351486

    Article  PubMed  CAS  Google Scholar 

  • A J Conner T Glare J Nap (2003) ArticleTitleThe release of genetically modified crops into the environment: Part II Overview of ecological risk assessment Plant J. 33 19–46 Occurrence Handle12943539 Occurrence Handle10.1046/j.0960-7412.2002.001607.x

    Article  PubMed  Google Scholar 

  • P Dale B Clarke E Fontes (2000) ArticleTitlePotential for the environmental impact of transgenic crops Nat. Biotechnol. 20 567–574

    Google Scholar 

  • G Di Giovanni L Watrud R Seidler F Widmer (1999) ArticleTitleComparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergeneric consensus sequence-PCR (ERIC-PCR) Microbial Ecol. 37 129–139 Occurrence Handle1:CAS:528:DyaK1MXotVylug%3D%3D

    CAS  Google Scholar 

  • K K Donegan C J Palm V J Fieland L A Porteous L M Ganio D L Schaller L Q Bucao R J Seidler (1995) ArticleTitleChanges in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin Appl. Soil Ecol. 2 111–124 Occurrence Handle10.1016/0929-1393(94)00043-7

    Article  Google Scholar 

  • K Donegan D Schaller J Stone L Ganio G Reed P Hamm R Seidler (1996) ArticleTitleMicrobial populations, fungal species diversity and plant pathogen levels in field plots of potato plant expressing the Bacillus thuringiensis va. tenebrionis endotoxin Transgenic Res. 5 25–35 Occurrence Handle1:CAS:528:DyaK28Xos1eltw%3D%3D Occurrence Handle10.1007/BF01979919

    Article  CAS  Google Scholar 

  • K Donegan R J Seidler J D Doyle L A Porteous G D Di Giovanni F Widmer L S Watrud (1999) ArticleTitleA field study with engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem J. Appl. Ecol. 36 920–936 Occurrence Handle10.1046/j.1365-2664.1999.00448.x

    Article  Google Scholar 

  • K Donegan R J Seidler V J Fieland D L Schaller C J Palm L M Ganio D M Cardwell Y Steinberger (1997) ArticleTitleDecomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations J. Appl. Ecol. 34 767–777

    Google Scholar 

  • J D Doyle K A Short G Stotzky R J King R J Seidler R H Olsen (1991) ArticleTitleEcologically significant effects of Pseudomonas putida PPO301 (pRO103), genetically engineered to degrade 2,4-dichlorophenoxyacetate, on microbial populations and processes in soil Can. J. Microbiol. 37 682–691 Occurrence Handle1954581 Occurrence Handle1:CAS:528:DyaK3MXmsFajs7w%3D

    PubMed  CAS  Google Scholar 

  • W R Ellis G E Ham E L Schmidt (1984) ArticleTitlePersistence and recovery of Rhizobium japonicum inoculum in a field soil Agron. J. 76 573–576 Occurrence Handle10.2134/agronj1984.00021962007600040015x

    Article  Google Scholar 

  • J Fox (2004) ArticleTitleUSDA scrutinizes GM organism regulations Nat. Biotechnol. 22 254–255 Occurrence Handle14990936 Occurrence Handle1:CAS:528:DC%2BD2cXhs1Wnu7w%3D

    PubMed  CAS  Google Scholar 

  • K Gebhard K Smalla (1999) ArticleTitleMonitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer FEMS Microbiol. 28 261–272 Occurrence Handle1:CAS:528:DyaK1MXhvF2nsbo%3D

    CAS  Google Scholar 

  • Hellmich R, Siegfried B, Sears M, Stanley-Horne D, Matilla R, Spencer T, Bidne K, and Lewis L 2001 Monarch caterpillar sensitivity to Bacillus thuringiensis – purified protein and pollen. Proc. Natl. Acad. Sci., 10.1073/211297698

  • K Heungens J Parke (2000) ArticleTitleZoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDRI on two oomycete pathogens of pea (Pisum sativum L.) Appl. Environ. Microbiol. 66 5192–5200 Occurrence Handle11097889 Occurrence Handle1:CAS:528:DC%2BD3MXjsVyhtbk%3D Occurrence Handle10.1128/AEM.66.12.5192-5200.2000

    Article  PubMed  CAS  Google Scholar 

  • T Hoffman C Golz O Schieder (1994) ArticleTitleForeign gene sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants Curr. Genet. 27 70–76

    Google Scholar 

  • M A Hood R J Seidler (1995) Design of microcosms to provide data reflecting field trials of GEMs A D L Akkermans J D Van Elsas F J De Bruijn (Eds) Molecular Microbial Ecology Manual Kluwer Academic Publishers Dordrecht 367–381

    Google Scholar 

  • R James J C Miller B Lighthart (1993) ArticleTitleBacillus thuringiensis var kursatki affects a beneficial insect, the cinnabar moth (Lepidoptera: Arctiidae) J. Econ. Entomol. 86 334–339

    Google Scholar 

  • J Lipuma (1997) ArticleTitleBurkholderia cepacia: management issues and new insights Clin. Chest Med. 19 473–486

    Google Scholar 

  • N Lozzia (1999) ArticleTitleBiodiversity and structure of ground beetle assemblages (Coleoptera: Carabidae) in Bt corn and its effects on target insects Boll. Zool. Agr. Bachic. 31 37–58

    Google Scholar 

  • E Mahenthiralingham P Sayre (2003) Burkholderia cepacia complex E Geller (Eds) McGraw Hill Yearbook of Science and Technology McGraw Hill New York 41–44

    Google Scholar 

  • McClung G and Sayre P 1994 Risk assessment for the release of recombinant rhizobia at a small-scale agricultural field site. In A Review of Ecological Assessment Case Studies from a Risk Assessment Perspective. pp. 2-1–2-35. US Environmental Protection Agency (EPA/630/R-94/003), Washington, DC

  • Mendelsohn M, Kough J, Vaituzis Z and Matthews K 2003 Are Bt crops safe?

  • The US EPA’s analysis of Bt crops finds they pose no significant risk to the environment or to human health. Nat. Biotechnol. 21, 1003–1009

  • J C Miller (1990) ArticleTitleField assessment of the effects of a microbial pest control agent on nontarget Lepidoptera Am. Entomol. 36 135–139

    Google Scholar 

  • H W Moawad W R Ellis E L Schmidt (1984) ArticleTitleRhizosphere response as a factor in competition among three serogroups of indigenous Rhizobium japonicum for nodulation of field-grown soybeans Appl. Environ. Microbiol. 47 607–612 Occurrence Handle16346501 Occurrence Handle1:STN:280:DC%2BC3crotVShtg%3D%3D

    PubMed  CAS  Google Scholar 

  • H S Modjo J W Hendrix (1986) ArticleTitleThe mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt disease Phytopathology 76 688–691 Occurrence HandleA1986D402800006 Occurrence Handle10.1094/Phyto-76-688

    Article  ISI  Google Scholar 

  • InstitutionalAuthorNameNational Academy of Sciences (2004) Safety of genetically engineered foods: Approaches to assessing unintended health effects National Academy Press Washington, DC 261

    Google Scholar 

  • InstitutionalAuthorNameNational Research Council (2000) Genetically modified pest-protected plants: Science and regulation. National Research Council National Academy Press Washington, DC 261

    Google Scholar 

  • InstitutionalAuthorNameNational Research Council (2001) Ecological monitoring of genetically modified crops: A workshop summary. National Research Council National Academy Press Washington, DC 60

    Google Scholar 

  • InstitutionalAuthorNameNational Research Council (2002) Environmental effects of transgenic plants: The scope and adequacy of regulation. National Research Council National Academy Press Washington, DC 342

    Google Scholar 

  • K Neilsen (1998) ArticleTitleHorizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event? FEMS Microbiol. Rev. 22 79–103

    Google Scholar 

  • K Nielsen J Van Elsas K Smalla (2000) ArticleTitleTransformation of Acinetobacter sp strain BD413(pFG4ΔnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants Appl. Environ. Microbiol. 66 1237–1242 Occurrence Handle10698801 Occurrence Handle1:CAS:528:DC%2BD3cXhsFyru7w%3D Occurrence Handle10.1128/AEM.66.3.1237-1242.2000

    Article  PubMed  CAS  Google Scholar 

  • Nuessly G and Hentz M 1999 Comparison of insect populations, damage and yield between commercial plantings of standard at Bt-enhanced sweet corn: (Brown’s Farm Road Trial, Double D Main Farm Trial, Hundley Farm Trial, Pahokee, FL Trial), University of Florida, IFAS Everglades Research and Education Center, Belle Glade, FL 33430

  • J Obrycki (1997) Effects of Cry9C corn on predatory non-target beneficial insects and endangered species: determination of predatory non-target beneficial insect study/pollen production study Department of Entomology, Iowa State University Ames, IA 88

    Google Scholar 

  • D Orr D Landis (1997) ArticleTitleOviposition of European corn borer (Lepidoptera: Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn J. Econ. Entomol. 90 905–909

    Google Scholar 

  • C J Palm K Donegan D L Harris R J Seidler (1994) ArticleTitleQuantitation in soil ofBacillus thuringiensis var. kurstaki delta-endotoxin from transgenic plants Mol. Ecology 3 145–451 Occurrence Handle1:CAS:528:DyaK2cXksFahsbY%3D

    CAS  Google Scholar 

  • C J Palm D L Schaller K Donegan R J Seidler (1996) ArticleTitlePersistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki endotoxin Can. J. Microbiol. 42 1258–1262 Occurrence Handle1:CAS:528:DyaK2sXislGlug%3D%3D Occurrence Handle10.1139/m96-163

    Article  CAS  Google Scholar 

  • Pfender W F, Maggard S P and Watrud L S 1995 Soil microbial activity and plant/microbe symbioses as indicators for ecological effects of bioremediation biotechnology. In Proceedings of the Biotech Risk Assessment Symposium. pp. 269–279. University of Maryland Biotech Inst., College Park, MD

  • C Pilcher M Rice J Obrycki L Lewis (1997) ArticleTitleField and laboratory evaluations of Bacillus thuringiensis corn on secondary Lepidopteran pests (Lepidoptera: Noctuidae) J. Econ. Entomol. 90 669–678

    Google Scholar 

  • J Pleasants R Hellmich G Dively M Sears D Stanley-Horne H Matilla J Foster T Clark G Jones (2001) ArticleTitleCorn pollen deposition on milkweeds in and near corn fields Prol. Natl. Acad. Sci. USA 98 11919–11924 Occurrence Handle1:CAS:528:DC%2BD3MXns1equ7g%3D

    CAS  Google Scholar 

  • D Saxena S Flores G Stotzky (1999) ArticleTitleInsecticidal toxin in root exudates from Bt corn Nature 402 480 Occurrence Handle10591205 Occurrence Handle1:CAS:528:DyaK1MXotFKhurs%3D Occurrence Handle000084013200041

    PubMed  CAS  ISI  Google Scholar 

  • D Saxena G Stotzky (2001a) ArticleTitleBacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil Soil Biol. Biochem. 33 1225–1230 Occurrence Handle1:CAS:528:DC%2BD3MXlsV2js74%3D Occurrence Handle10.1016/S0038-0717(01)00027-X

    Article  CAS  Google Scholar 

  • D Saxena G Stotzky (2001b) ArticleTitleBacillus thuringiensis corn has a higher lignin content than non-Bacillus thuringiensis corn Am. J. Bot. 88 1704–1706 Occurrence Handle1:CAS:528:DC%2BD3MXnsFSisbs%3D

    CAS  Google Scholar 

  • P Sayre (1997) Risk assessment of a recombinant biosensor GL Sayler J Sanseverino K Davis (Eds) Biotechnology in the Sustainable Environment Plenum Press New York 269–279

    Google Scholar 

  • K Schluter J Futterer I Porykus (1995) ArticleTitle“Horizontal” gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs – if at all – at an extremely low frequency Biotechnology 13 1094–1098 Occurrence Handle9636282 Occurrence Handle1:STN:280:DyaK1c3pvF2isw%3D%3D

    PubMed  CAS  Google Scholar 

  • R J Seidler (1992) ArticleTitleEvaluation of methods for detecting ecological effects from genetically engineered microorganisms and microbial pest control agents in terrestrial systems Biotechnol. Adv. 10 149–178 Occurrence Handle14544532 Occurrence Handle1:STN:280:DC%2BD3svnsVSltg%3D%3D Occurrence Handle10.1016/0734-9750(92)90001-P

    Article  PubMed  CAS  Google Scholar 

  • R J Seidler (1994) Evaluation of methods for detecting ecological effects from genetically engineered microorganisms and microbial pest control agents in terrestrial systems M J Bazin J M Lynch (Eds) Environmental Gene Release: Models, Experiments and Risk Assessment Chapman and Hall London 99–122

    Google Scholar 

  • Seidler R J and Settel J 1991 Eds. The use and development of environmentally controlled chambers (mesocosms) for evaluating biotechnology products. U.S. Environmental Protection Agency (EPA/600/9–91/013), Washington, DC, 220 pp

  • R J Seidler M V Walter S Hern V Fieland D Schmedding S E Lindow (1994) ArticleTitleMeasuring the dispersal and reentrainment of recombinantPseudomonas syringae at California test sites Microb. Releases 2 209–216

    Google Scholar 

  • K A Short R J Seidler R H Olsen (1990) ArticleTitleSurvival and degradative capacity of Pseudomonas putida induced or constitutively expressing plasmid-mediated degradation of 2,4-dichlorophenoxyacetate in soil Can J. Microbiol. 36 821–826 Occurrence Handle1:CAS:528:DyaK3MXhtFyhtLY%3D Occurrence Handle10.1139/m90-142

    Article  CAS  Google Scholar 

  • K A Short J D Doyle R J King R J Seidler (1991) ArticleTitleEffects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-mediated ecological processes in soil J. Appl. Microbiol. 57 412–418 Occurrence Handle1:CAS:528:DyaK3MXpslGktQ%3D%3D

    CAS  Google Scholar 

  • S Sims L Holden (1996) ArticleTitleInsect bioassay for determining soil degradation of Bacillus thuringiensis subsp. kurstakiCry1Ab protein in corn tissue Environ. Entomol. 25 659–664

    Google Scholar 

  • R Steffan K Sperry M Walsh S Vainberg C Condee (1999) ArticleTitleField-scale evaluation of in situ bioaugmentation of chlorinated solvents in groundwater Environ. Sci. and Technol. 33 2771–2781 Occurrence Handle1:CAS:528:DyaK1MXktlWjtL0%3D

    CAS  Google Scholar 

  • D Stanley-Horn H Matilla M Sears G Dively R Rose R Hellmich L Lewis (2001) ArticleTitleAssessing impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies Proc. Natl. Acad. Sci. 98 11931–11936 Occurrence Handle11559839 Occurrence Handle1:CAS:528:DC%2BD3MXns1equ7Y%3D Occurrence Handle10.1073/pnas.211277798

    Article  PubMed  CAS  Google Scholar 

  • G Stotzky (2000) ArticleTitlePersistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids J. Environ. Qual. 29 691–705 Occurrence Handle1:CAS:528:DC%2BD3cXktFanurg%3D Occurrence Handle10.2134/jeq2000.00472425002900030003x

    Article  CAS  Google Scholar 

  • H Tapp G Stotzky (1998) ArticleTitlePersistence of insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil Soil Biol. Biochem. 30 471–476 Occurrence Handle1:CAS:528:DyaK1cXjtFeitL4%3D Occurrence Handle10.1016/S0038-0717(97)00148-X

    Article  CAS  Google Scholar 

  • O Taylor L Wassenaar K Hobson (1999) Tracking monarchs with isotopes O R Taylor (Eds) Monarch Watch: 1997 Season Summary Allen Press Kansas 235–247

    Google Scholar 

  • J M Tiedje R K Colwell Y L Grossman R E Hodson R N Lenski R N Mack P J Regal (1989) ArticleTitleThe planned introduction of genetically engineered organisms: ecological considerations and recommendation Ecology 70 298–315 Occurrence HandleA1989T900300002

    ISI  Google Scholar 

  • H N Thatoi S Sahu A K Misra G S Padhi (1993) ArticleTitleComparative effect of VAM inoculation on growth, nodulation and rhizobium population of subabul (Leucaena leucocephala (Lam) de Wit.) grown in iron mine waste soil Indian For. 119 481–489

    Google Scholar 

  • F Urquhart (1960) The Monarch Butterfly University of Toronto Press Ontario, Canada 361

    Google Scholar 

  • USDA – NASS 1997 U.S. Department of Agriculture, National Agricultural Statistics Service, Census of Agriculture Volume 1: Part 51, Chapter 2

  • P Vandamme D Henry T Coenye S Nzula M Vancanneyt J LiPuma D Speert J Govan E Mahenthiralingam (2000) ArticleTitleBurkholderia anthina sp. nov. and Burkholderia pyrrocinina, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools FEMS Immunol. Med. Mic. 1402 1–7

    Google Scholar 

  • H Vierheilig M Alt J Lange M Gut-Rella A Wiemke T Boller (1995) ArticleTitleColonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae Appl. Environ. Microbiol. 8 3031–3034

    Google Scholar 

  • L S Watrud (2000) Genetically Engineered Plants in the Environment – Applications and Issues N S Rao Y R Dommergues (Eds) Microbial Interactions in Agriculture and Forestry (Vol. 2). Science Publishers Inc. Enfield 61–81

    Google Scholar 

  • L S Watrud R J Seidler (1998) Nontarget ecological effects of plant, microbial, and chemical introductions to terrestrial systems P M Huang (Eds) Soil Chemistry and Ecosystem Health. Soil Science Society of America Madison WI 313–340

    Google Scholar 

  • F Widmer R J Seidler K Donegan G L Reed (1997) ArticleTitleQuantification of transgenic plant marker gene persistence in the field Mol. Ecol. 6 1–7 Occurrence Handle1:CAS:528:DyaK2sXnsVCksQ%3D%3D Occurrence Handle10.1046/j.1365-294X.1997.00145.x

    Article  CAS  Google Scholar 

  • Widmer F, Porteous L A, Donegan K, Doyle J D and Seidler R J 2000. Polyphasic approach to field risk assessments: application to transgenic alfalfa inoculated with recombinant Sinorhizobium meliloti with enhanced N2-fixing abilities. In Proceedings 5th International Symposium, The Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms. Ed. J Schiemann. pp. 272–278. Arno Brynda, Berlin

  • L L Wolfenbarger P R Phifer (2000) ArticleTitleThe ecological risks and benefits of genetically engineered plants Science 290 2088–2093 Occurrence Handle11118136 Occurrence Handle1:CAS:528:DC%2BD3cXptVyjtL8%3D Occurrence Handle000165870600039 Occurrence Handle10.1126/science.290.5499.2088

    Article  PubMed  CAS  ISI  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon J. Seidler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayre, P., Seidler, R.J. Application of GMOs in the U.S.: EPA research & regulatory considerations related to soil systems. Plant Soil 275, 77–91 (2005). https://doi.org/10.1007/s11104-004-6652-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-004-6652-4

Keywords

Navigation