Skip to main content
Log in

High-speed MDM-Ro-FSO system by incorporating spiral-phased Hermite Gaussian modes

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In the wake of growing challenges of dispersing communication services in rural areas, Radio over Free Space (Ro-FSO) is a useful technology that can carry heterogeneous services. This work focuses on transmitting two independent channels, each carrying 2.5 Gbps data and 10 GHz radio signal, by utilizing mode-division multiplexing (MDM) of two spiral-phased Hermite Gaussian modes (HG00 and HG01) free space optical (FSO) link. It also evaluates the performance of the proposed Ro-FSO system under the impact of beam divergence and various atmospheric turbulences such as moderate fog and heavy fog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. CISCO.: Cisco visual networking index: global mobile data traffic forecast update, 2015–2020 (2015)

  2. Džebo, A., Mutapčić, H.: Regulatory aspects of mobile broadband technologies. In: 2013 36th International Convention on Information & Communication Technology Electronics & Microelectronics (MIPRO), pp. 461–465 (2013)

  3. ITU, ICT- Facts and figures (2015)

  4. Werbach, K., Mehta, A.: The spectrum opportunity: sharing as the solution to the wireless crunch. Int. J. Commun. 8, 22 (2014)

    Google Scholar 

  5. Sharma, V., Kumar, S.: Empirical evaluation of wired-and wireless-hybrid OFDM-OSSB-RoF transmission system. Opt. Int. J. Light Electron Opt. 124, 4529–4532 (2013)

    Article  Google Scholar 

  6. Sharma, V., Kumar, S.: Hybrid OFDM-OSSB-RoF transmission system incorporating fiber Bragg grating. Opt. Int. J. Light Electron Opt. 124, 4670–4672 (2013)

    Article  Google Scholar 

  7. Kaur, P., Kaur, R., Chaudhary, S.: Implementation of high speed long reach hybrid radio over multimode transmission system. Int. J. Comput. Appl. 91(14), 42–47 (2014)

    Google Scholar 

  8. Chaudhary, S., Thakur, D., Sharma, A.: 10 Gbps-60 GHz RoF transmission system for 5G applications. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0079

  9. Chaudhary, S., Chauhan, P., Sharma, A.: High speed \(4\times 2.5\) Gbps-5 GHz AMI-WDM-RoF transmission system for WLANs. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0082

  10. Agrell, E., Karlsson, M., Chraplyvy, A., Richardson, D.J., Krummrich, P.M., Winzer, P., et al.: Roadmap of optical communications. J. Opt. 18, 063002 (2016)

    Article  Google Scholar 

  11. Limbach, F.: Cooperative value creation and cost reduction strategies in a disintegrated telecommunications value chain (2015)

  12. Chaudhary, S., Amphawan, A.: The role and challenges of free-space optical systems. J. Opt. Commun. 35, 327–334 (2014)

    Article  Google Scholar 

  13. Nistazakis, H., Stassinakis, A., Sandalidis, H., Tombras, G.: QAM and PSK OFDM RoFSO over \(M\)-turbulence induced fading channels. IEEE Photonics J. 7, 1–11 (2015)

    Article  Google Scholar 

  14. Pesek, P., Bohata, J., Zvanovec, S., Perez, J.: Analyses of dual polarization WDM and SCM radio over fiber and radio over FSO for C-RAN architecture. In: 2016 25th Wireless and Optical Communication Conference (WOCC), pp. 1–4 (2016)

  15. Dat, P.T., Bekkali, A., Kazaura, K., Wakamori, K., Matsumoto, M.: A universal platform for ubiquitous wireless communications using radio over FSO system. J. Lightwave Technol. 28, 2258–2267 (2010)

    Article  Google Scholar 

  16. Gordon, G.S., Crisp, M.J., Penty, R.V., White, I.H.: High-order distortion in directly modulated semiconductor lasers in high-loss analog optical links with large RF dynamic range. J. Lightwave Technol. 29, 3577–3586 (2011)

    Article  Google Scholar 

  17. Maeda, J., Kimura, K., Ebisawa, S.: Experimental study on variation of signal amplitude in radio-over-fiber transmission induced by harmonics of modulation sidebands through fiber dispersion. J. Lightwave Technol. 32, 3536–3544 (2014)

    Article  Google Scholar 

  18. Ansari, I.S., Yilmaz, F., Alouini, M.-S.: Impact of pointing errors on the performance of mixed RF/FSO dual-hop transmission systems. IEEE Wirel. Commun. Lett. 2, 351–354 (2013)

    Article  Google Scholar 

  19. Samimi, H., Uysal, M.: End-to-end performance of mixed RF/FSO transmission systems. IEEE/OSA J. Opt. Commun. Netw. 5, 1139–1144 (2013)

    Article  Google Scholar 

  20. Soleimani-Nasab, E., Uysal, M.: Generalized performance analysis of mixed RF, FSO systems. In: 3rd International Workshop on Optical Wireless Communications (IWOW), vol. 2014, pp. 16–20 (2014)

  21. Zhou, H., Mao, S., Agrawal, P.: Optical power allocation for adaptive WDM transmissions in free space optical networks. In: Wireless Communications and Networking Conference (WCNC). IEEE, vol. 2014, pp. 2677–2682 (2014)

  22. Kanno, A., Inagaki, K., Morohashi, I., Sakamoto, T., Kuri, T., Hosako, I., et al.: 40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Opt. Express 19, B56–B63 (2011)

    Article  Google Scholar 

  23. Naila, C.B., Wakamori, K., Matsumoto, M.: Transmission analysis of M-ary phase shift keying multiple-subcarrier modulation signals over radio-on-free-space optical channel with aperture averaging. Opt. Eng. 50, 105006–105006-9 (2011)

    Article  Google Scholar 

  24. Carpenter, J., Wilkinson, T.D.: All optical mode-multiplexing using holography and multimode fiber couplers. J. Lightwave Technol. 30, 1978–1984 (2012)

    Article  Google Scholar 

  25. Arik, S.O., Kahn, J.M., Ho, K.-P.: MIMO signal processing for mode-division multiplexing: an overview of channel models and signal processing architectures. IEEE Signal Process. Mag. 31, 25–34 (2014)

    Article  Google Scholar 

  26. Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Essiambre, R.-J., Winzer, P. et al.: Space-division multiplexing over 10 km of three-mode fiber using coherent 6\(\times \) 6 MIMO processing. In: Optical Fiber Communication Conference, p. PDPB10 (2011)

  27. Jung, Y., Chen, R., Ismaeel, R., Brambilla, G., Alam, S.-U., Giles, I., et al.: Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. Opt. Express 21, 24326–24331 (2013)

    Article  Google Scholar 

  28. Tsekrekos, C.P., Syvridis, D.: All-fiber broadband mode converter for future wavelength and mode division multiplexing systems. IEEE Photonics Technol. Lett. 24, 1638–1641 (2012)

    Article  Google Scholar 

  29. Kaiser, T., Flamm, D., Schröter, S., Duparré, M.: Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt. Express 17, 9347–9356 (2009)

    Article  Google Scholar 

  30. Fazal, I.M., Ahmed, N., Wang, J., Yang, J.-Y., Yan, Y., Shamee, B., et al.: 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels. Opt. Lett. 37, 4753–4755 (2012)

    Article  Google Scholar 

  31. Ren, Y., Huang, H., Xie, G., Ahmed, N., Yan, Y., Erkmen, B.I., et al.: Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Opt. Lett. 38, 4062–4065 (2013)

    Article  Google Scholar 

  32. Huang, H., Xie, G., Yan, Y., Ahmed, N., Ren, Y., Yue, Y., et al.: 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 39, 197–200 (2014)

    Article  Google Scholar 

  33. Krenn, M., Fickler, R., Fink, M., Handsteiner, J., Malik, M., Scheidl, T., et al.: Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 16, 113028 (2014)

    Article  Google Scholar 

  34. Ren, Y., Wang, Z., Liao, P., Li, L., Xie, G., Huang, H., et al.: Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Opt. Lett. 41, 622–625 (2016)

    Article  Google Scholar 

  35. Zhao, Y., Liu, J., Du, J., Li, S., Luo, Y., Wang, A., et al.: Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing. In: Optical Fiber Communication Conference, p. Th1H. 3 (2016)

  36. Sarangal, H., Singh, A., Malhotra, J., Chaudhary, S.: A cost effective 100 Gbps hybrid MDM–OCDMA–FSO transmission system under atmospheric turbulences. Opt. Quantum Electron. 49, 184 (2017)

    Article  Google Scholar 

  37. Amphawan, A., Chaudhary, S., Chan, V.: \(2 \times 20\) Gbps-40 GHz OFDM Ro-FSO transmission with mode division multiplexing. J. Eur. Opt. Soc. Rapid Publ. 9, 14041 (2014)

  38. Amphawan, A., Chaudhary, S., Din, R., Omar, M.N.: 5Gbps HG 0, 1 and HG 0, 3 optical mode division multiplexing for RoFSO. In: 2015 IEEE 11th International Colloquium on Signal Processing & Its Applications (CSPA), pp. 145–149 (2015)

  39. Amphawan, A., Chaudhary, S., Elfouly, T., Abualsaud, K.: Optical mode division multiplexing for secure Ro-FSO WLANs. Adv. Sci. Lett. 21, 3046–3049 (2015)

    Article  Google Scholar 

  40. Amphawan, A., Chaudhary, S., Samad, H., Ahmad, J., Poly-Tech, K.: Mode division multiplexing of LG and HG modes in Ro-FSO. In International Conference on Electrical Engineering, Computer Science and Informatics (EECSI2015) (2015)

  41. Amphawan, A., Chaudhary, S.: Free-space optical mode division multiplexing for switching between millimeter-wave picocells. In: International Conference on Optical and Photonic Engineering (icOPEN2015), pp. 95242H–95242H-6 (2015)

  42. Amphawan, A., Chaudhary, S., Gupta, B.B.: Secure MDM-OFDM-Ro-FSO system using HG modes. Int. J. Sens. Wirel. Commun. Control 5, 13–18 (2015)

    Article  Google Scholar 

  43. Ghatak, A., Thyagarajan, K.: An Introduction to Fiber Optics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  44. Johnson, E.G., Stack, J., Koehler, C.: Light coupling by a vortex lens into graded index fiber. J. Lightwave Technol. 19, 753 (2001)

    Article  Google Scholar 

  45. MacCartney, E.J.: Optics of the Atmosphere. Wiley, Hoboken (1976)

    Google Scholar 

  46. Kim, I.I., McArthur, B., Korevaar, E.J.: Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In: Information Technologies 2000, pp. 26–37 (2001)

  47. Majumdar, A.K.: Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber Commun. Rep. 2, 345–396 (2005)

    Article  Google Scholar 

  48. Mahmoud, S.W., Wiedenmann, D., Kicherer, M., Unold, H., Jager, R., Michalzik, R., et al.: Spatial investigation of transverse mode turn-on dynamics in VCSELs. IEEE Photonics Technol. Lett. 13, 1152–1154 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushank Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Amphawan, A. High-speed MDM-Ro-FSO system by incorporating spiral-phased Hermite Gaussian modes. Photon Netw Commun 35, 374–380 (2018). https://doi.org/10.1007/s11107-017-0752-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0752-6

Keywords

Navigation