Skip to main content
Log in

Structural Features of TiNi-Based Biocompatible Porous Materials with Terraced Pore-Wall Surface Morphology

  • Published:
Russian Physics Journal Aims and scope

An investigation of the structural features of TiNi-based porous materials, having terraced morphology of the pore-wall surfaces, manufactured by sintering is performed. Using liquid-phase diffusion sintering of a TiNibased powder, a porous alloy is manufactured where the fraction of the master phase TiNi is 78.6 wt.%. The distribution of the secondary phases Ti2Ni, Ti4Ni2(О,N,С) and Ti3Ni4 in the porous materials is determined by the structure of the spongy and compact powder particles. The pore-wall surfaces of the resulting porous alloy exhibit terraced relief in all regions of the melt formation. The height of the steps is up to 0.25 μm for the width of the terraces 0.4–0.5 μm. The terraces are found on the areas free from the secondary-phase particles; they propagate across the curved pore-wall surface within one grain. In certain areas, there are hexagonal islands on the pore-wall surface, which measure from 1 to 2 μm. The terraced relief is formed as a result of volumeand surface diffusion during the interaction of the melt with the martensite B19′ crystals on the pore-wall surfaces. It is hypothesized that the mass transfer processes during the formation of terraces are affected by the phase content inhomogeneity and the creep deformation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. É. Gunther, Shape Memory Biomaterials and Implants in Medicine, KnE Materials Science, Busan (2017)

    Google Scholar 

  2. D. Madamba, The Effect of Surface Treatment on Nickel Leaching from Nitinol, Master's Theses, San Jose State University (2013).

  3. B. Schmidt, Radiation Effects and Defects in Solids, 162, No. 3–4, 171–184 (2007).

    Article  ADS  Google Scholar 

  4. J. M. Poate, G. Foti, and D. C. Jacobson [Eds.], Surface Modification and Alloying by Laser, Ion and Electron Beams, Plenum Press, New York and London (1985).

    Google Scholar 

  5. L. L. Meisner, A. I. Lotkov, M. G. Ostapenko, et al., Inorgan. Mater.: Appl. Res., 3, No. 5, 401–407 (2012).

    Article  Google Scholar 

  6. V. N. Khodorenko, S. G. Anikeev, and V. E. Gunther, Russ. Phys. J., 57, No. 6, 723–730 (2014).

    Article  Google Scholar 

  7. Yu. F. Yasenchuk, N. V. Artyukhova, T. L. Chekalkin, еt al., Adv. Mater. Lett., 7, No. 8, 630–634 (2016).

    Article  Google Scholar 

  8. O. G. Kozlova, Crystal Growth and Morphology [in Russian], MSU Publ., Moscow (1980).

    Google Scholar 

  9. M. V. Mamonova, V. V. Prudnikov, and I. A. Prudnikova, Surface Physics. Theoretical Models and Experimental Methods [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  10. A. A. Barybin, V. I. Tomilin, and V. I. Shapovalov, Physical-Technological Foundations of Macro-, Micro-, and Nanoelectronics [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  11. R. Novakovic and E. Ricci, J. Alloys and Compounds, 452, 167–173 (2008).

    Article  Google Scholar 

  12. E. Saaremaa, The Surface Tension of Solid Nickel, Master’s Theses, University of British Columbia (1957).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Anikeev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 34–41, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikeev, S.G., Artyukhova, N.V., Khodorenko, V.N. et al. Structural Features of TiNi-Based Biocompatible Porous Materials with Terraced Pore-Wall Surface Morphology. Russ Phys J 61, 1039–1046 (2018). https://doi.org/10.1007/s11182-018-1494-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1494-3

Keywords

Navigation