Skip to main content
Log in

Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We present a combined theoretical—experimental study aiming to provide information about the location and coordination environment of the Cu2+ species involved in the selective reduction of NOx with NH3 catalyzed by Cu-zeolites. From the experimental side, we show and discuss the EPR spectra of the three molecular sieves most widely used as catalysts for the NH3-SCR-NOx reaction, namely Cu-SSZ-13, Cu-SAPO-34 and Cu-ZSM-5 both in their hydrated state and after dehydration. Then, we investigate the EPR spectra of Cu-SSZ-13 and Cu-SAPO-34 under the following conditions: (i) after NH3 adsorption, (ii) after NO addition, and (iii) in the presence of a NO/O2 mixture. As regards the theoretical part, an exhaustive computational study has been performed that includes geometry optimization and calculation of the EPR parameters of all the relevant systems involved in the NH3-SCR-NOx reaction. The influence of local geometry and Al/Si distribution in the zeolite framework on the EPR parameters and the most probable location of Cu2+ in each material are analyzed, and assignations of the EPR signals obtained under different reaction conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen H-Y (2014) In: Nova I, Tronconi E (eds) Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, New York

    Google Scholar 

  2. Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492–531

    Article  CAS  Google Scholar 

  3. Gao F, Kwak J, Szanyi J, Peden CHF (2013) Top Catal 56:1441–1459

    Article  CAS  Google Scholar 

  4. Deka U, Lezcano-González I, Weckhuysen BM, Beale AM (2013) ACS Catal 3:413–427

    Article  CAS  Google Scholar 

  5. Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J (2015) Chem Soc Rev 44:7371–7405

    Article  CAS  Google Scholar 

  6. Zhang R, Liu N, Lei Z, Chen B (2016) Chem Rev 116:3658–3721

    Article  CAS  Google Scholar 

  7. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190

    Article  CAS  Google Scholar 

  8. Bates SA, Verma A, Paolucci C, Parekh A, Anggara T, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) J Catal 312:87–97

    Article  CAS  Google Scholar 

  9. Beale AM, Lezcano-Gonzalez I, Slawinksi WA, Wragg DS (2016) Chem Commun 52:6170–6173

    Article  CAS  Google Scholar 

  10. Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) J Catal 297:56–64

    Article  CAS  Google Scholar 

  11. Paolucci C, Khurana I, Parekh AA, Li SC, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Science 357:898–903

    Article  CAS  Google Scholar 

  12. Gao F, Mei DH, Wang YL, Szanyi J, Peden CHF (2017) JACS 139:4935–4942

    Article  CAS  Google Scholar 

  13. Dedecek J, Kaucky D, Wichterlova B (2000) Microporous Mesoporous Mater 35–36:483–494

    Article  Google Scholar 

  14. Mentzen BF, Bergeret G (2007) J Phys Chem C 111:12512–12516

    Article  CAS  Google Scholar 

  15. Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29

    Article  CAS  Google Scholar 

  16. Godiksen A, Stappen FN, Vennestrom PNR, Giordanino F, Rasmussen SB, Lundegaard LF, Mossin S (2014) J Phys Chem C 118:23126–23138

    Article  CAS  Google Scholar 

  17. Godiksen A, Vennestrom PNR, Rasmussen S, Mossin S (2017) Top Catal 60:13–29

    Article  CAS  Google Scholar 

  18. Ames WM, Larsen SC (2010) J Phys Chem A 114:589–594

    Article  CAS  Google Scholar 

  19. Groothaert MH, Pierloot K, Delabie A, Schoonheydt RA (2003) Phys Chem Chem Phys 5:2135–2144

    Article  CAS  Google Scholar 

  20. Delabie A, Pierloot K, Groothaert MH, Weckhuysen BM, Shoonheydt RA (2002) Phys Chem Chem Phys 4:134–145

    Article  CAS  Google Scholar 

  21. Pierloot K, Delabie A, Groothaert MH, Shoonheydt RA (2001) Phys Chem Chem Phys 3:2174–2183

    Article  CAS  Google Scholar 

  22. Martinez-Franco R, Moliner M, Thogersen JR, Corma A (2013) ChemCatChem 5:3316–3323

    Article  CAS  Google Scholar 

  23. Moliner M, Franch C, Palomares E, Grill M, Corma A (2012) Chem Commun 48:8264–8266

    Article  CAS  Google Scholar 

  24. Martínez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) J Catal 314:73–82

    Article  Google Scholar 

  25. Pietrzyk P, Podolska K, Sojka Z (2013) Electron Paramagn Reson 23:264–311

    Article  CAS  Google Scholar 

  26. Malkin E, Repisky M, Komorovsky S, Mach P, Malkina OL, Malkin VG (2011) J Chem Phys 134:044111-1–044111-8

    Article  Google Scholar 

  27. Hrobarik P, Repisky M, Komorovsky S, Hrobarikova V, Kaupp M (2011) Theoret Chem Acc129:715–725

    Article  CAS  Google Scholar 

  28. Gohr S, Hrobarik P, Repisky M, Komorovsky S, Ruud K, Kaupp M (2015) J Phys Chem A 119:12892–12905

    Article  CAS  Google Scholar 

  29. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev 2:73–78

    CAS  Google Scholar 

  30. Neese F (2005) J Chem Phys 122:034107-1–034107-13

    Google Scholar 

  31. Neese F (2003) J Chem Phys 118:3939–3948

    Article  CAS  Google Scholar 

  32. Neese F (2001) J Chem Phys 115:11080–11096

    Article  CAS  Google Scholar 

  33. Kossmann S, Kirchner B, Neese F (2007) Mol Phys 105:2049–2071

    Article  CAS  Google Scholar 

  34. Ames WM, Larsen SC (2009) J Phys Chem A 113:4305–4312

    Article  CAS  Google Scholar 

  35. Zunger A, Perdew JP (1981) Phys Rev B 23:5048–5079

    Article  Google Scholar 

  36. King, Mebel, McGrady, Eisenstein, Macgregor, Pyykko, Hay, Bridgeman, Frenking, Deeth, Maseras, Poater, Kaltsoyannis, Cox, Stace (2003) Faraday Discuss 124:275–288

    Article  Google Scholar 

  37. Neese F (2009) Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  38. Neese F (2007) Electron Paramagn Reson 20:73–95

    Article  CAS  Google Scholar 

  39. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  40. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  41. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  42. Blöchl P (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  43. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  44. Becke AD (1998) Phys Rev A 38:3098–3100

    Article  Google Scholar 

  45. Lee CT, Yang WT, Parr RGD (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  46. Heß BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365–371

    Article  Google Scholar 

  47. Neese F (2003) J Comput Chem 24:1740–1747

    Article  CAS  Google Scholar 

  48. Kutzelnigg W, Fleischer U, Schindler M (1990) NMR-basic principles and progress. Springer-Verlag, Heidelberg

    Google Scholar 

  49. Neese F (2002) Inorg Chim Acta 337:181–192

    Article  Google Scholar 

  50. Sinnecker S, Slep LD, Bill E, Neese F (2005) Inorg Chem 44:2245–2254

    Article  CAS  Google Scholar 

  51. Gao F, Walter ED, Kollar M, Wang Y, Szanyi J, Peden CHF (2014) J Catal 319:1–14

    Article  CAS  Google Scholar 

  52. Conesa JC, Soria J (1979) J Chem Soc Faraday Trans 75:406–422

    Article  CAS  Google Scholar 

  53. de Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Agren H (2007) Chem Phys 332:176–187

    Article  Google Scholar 

  54. Zamadics M, Kevan L (1992) J Phys Chem 96:8989–8993

    Article  CAS  Google Scholar 

  55. Ma L, Cheng YS, Cavataio G, McCabe RW, Fu LX, Li JH (2013) Chem Eng J 225:323–330

    Article  CAS  Google Scholar 

  56. Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK (2014) J Catal 311:447–457

    Article  CAS  Google Scholar 

  57. Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:2652–2657

    Article  CAS  Google Scholar 

  58. Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:5488–5491

    Article  CAS  Google Scholar 

  59. Liu X, Wu X, Weng D, Si Z, Ran R (2017) Catal Today 281:596–604

    Article  CAS  Google Scholar 

  60. Wang J, Yu T, Wang XQ, Qi GS, Xue JJ, Shen MQ, Li W (2012) Appl. Catal. B 127:137–147

    Article  CAS  Google Scholar 

  61. Fickel DW, Lobo R (2010) J Phys Chem C 114:1633–1640

    Article  CAS  Google Scholar 

  62. Di Iorio JR, Gounder R (2016) Chem Mater 28:2236–2247

    Article  Google Scholar 

  63. Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) J Am Chem Soc 138:6028–6048

    Article  CAS  Google Scholar 

  64. Godiksen A, Isaksen OI, Rasmussen SB, Vennestrom PNR, Mossin, S (2018) ChemCatChem 10:366–370

    Article  CAS  Google Scholar 

  65. Uzunova EL, Mikosch H, Hafner J (2009) J Mol Struct 912:88–94

    Article  CAS  Google Scholar 

  66. Kucherov AV, Karge HG, Schlogl R (1998) Microporous Mesoporous Mater 25:7–14

    Article  CAS  Google Scholar 

  67. Dedecek J, Sobalík Z, Tvaruzkova D, Kaucky D, Wichterlova B (1995) J Phys Chem 99:16327–16337

    Article  CAS  Google Scholar 

  68. Kucherov AV, Slinkin AA, Kondrat’ev DA, Bondarenko TN, Rubinstein AM, Minachev Kh M (1985) Zeolites 5:320–324

    Article  CAS  Google Scholar 

  69. Kucherov AV, Gerlock JL, Jen HW, Shelef M (1994) J Phys Chem 98:4892–4894

    Article  CAS  Google Scholar 

  70. Dedecek J, Balgova V, Pashkova V, Klein P, Wichterlova B (2012) Chem Mat 24:3231–3239

    Article  CAS  Google Scholar 

  71. Nachtigallova D, Nachtigall P, Sauer J (2001) Phys Chem Chem Phys 3:1552–1559

    Article  CAS  Google Scholar 

  72. Wichterlova B, Dedecek J, Sobalik Z (1998) In: Treacy MMJ, Marcus BK, Bisher ME, Higgins JB (eds.) Proceedings of the 12th International Zeolite Conference, Materials Research Society, Baltimore, USA, pp. 941–973

  73. Moreno-Gonzalez M, Hueso B, Boronat M, Blasco T, Corma A (2015) J Phys Chem Lett 6:1011–1017

    Article  CAS  Google Scholar 

  74. Lomachenko KA, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S (2016) J Am Chem Soc 138:12025–12028

    Article  CAS  Google Scholar 

  75. Sojka Z, Che M, Giamello E (1997) J Phys Chem B 101:4831–4838

    Article  CAS  Google Scholar 

  76. Prestipino C, Berlier G, Xamena F, Spoto G, Bordiga S, Zecchina A, Palomino GT, Yamamoto T, Lamberti C (2002) Chem Phys Lett 363:389–396

    Article  CAS  Google Scholar 

  77. Umamaheswari V, Hartmann M, Poppl A (2005) J Phys Chem B 109:1537–1546

    Article  CAS  Google Scholar 

  78. Moreno-Gonzalez M, Palomares AE, Chiesa M, Boronat M, Giamello E, Blasco T (2017) ACS Catal 7:3501–3509

    Article  CAS  Google Scholar 

  79. Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micrometrics, Norcross

    Google Scholar 

  80. Yahiro H, Ohmori Y, Shiotani M (2005) Microporous Mesoporous Mater 83:165–171

    Article  CAS  Google Scholar 

  81. Il’ichev AN, Ukharsky AA, Matyshak VA (1996) Mendeleev Commun 6:57–59

    Article  Google Scholar 

  82. Matyshak VA, Il’ichev AN, Ukharsky AA, Korchak VN (1997) J Catal 171:245–254

    Article  CAS  Google Scholar 

  83. Kucherov AV, Gerlock GL, Jen HW, Shelef M (1996) Catal Today 27:79–84

    Article  CAS  Google Scholar 

  84. Giamello E, Murphy D, Magnacca G, Morterra C, Shioya Y, Nomura T, Anpo M (1992) J Catal 136:510–520

    Article  CAS  Google Scholar 

  85. Lei GD, Adelman BJ, Sárkány J, Sachtler WMH (1995) Appl Catal B 5:245–256

    Article  CAS  Google Scholar 

  86. Pietrzyk P, Gil B, Sojka Z (2007) Catal Today 126:103–111

    Article  CAS  Google Scholar 

  87. Konduru MV, Chuang SSC (2000) J Catal 196:271–286

    Article  CAS  Google Scholar 

  88. Janssens TVW, Falsig H, Lundegaard LF, Vennestrøm PNR, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C, Bordiga S, Godiksen A, Mossin S, Beato P (2015) ACS Catal 5:2832–2845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Government through “Severo Ochoa Program” (SEV 2012-0267), MAT2015-71261-R and CTQ2015-68951-C3-1-R, and by the European Union through ERC-AdG-2014-671093 (SynCatMatch). Red Española de Supercomputación (RES) and Centre de Càlcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. E.F.V. thanks MINECO for her fellowship SVP-2013-068146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avelino Corma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, E., Moreno-González, M., Moliner, M. et al. Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites. Top Catal 61, 810–832 (2018). https://doi.org/10.1007/s11244-018-0929-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0929-y

Keywords

Navigation