Skip to main content
Log in

Spatially Resolved Photoelectron Spectroscopy from Ultra-high Vacuum to Near Ambient Pressure Sample Environments

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Modern scanning photoemission microscopes use zone plates to de-magnify the X-ray beam to nanometer size allowing spatially resolved XPS analysis of materials relevant in nanotechnology. So far these microscopes have been designed to operate in the ultra-high or high vacuum environments as all XPS systems; but at the beginning of this century the dream of K. Siegbahn, the inventor of XPS, to use it in the near ambient or ambient pressure regimes became a reality. Despite the fast development and spread of these setups designed for not spatially resolved experiments, now available both as synchrotron and laboratory facilities, it took more than a decade before a similar result could be extended to photoemission microscopy. The scanning photoemission microscope at Elettra is the first instrument where near ambient pressure conditions for in operando analysis can be fulfilled. This paper shows some recent results obtained at this microscope at different sample environment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gunther S, Kaulich B, Gregoratti L, Kiskinova M (2002) Prog Surf Sci 70(4–8):187–260

    Article  CAS  Google Scholar 

  2. Marsi M, Casalis L, Gregoratti L, Gunther S, Kolmakov A, Kovac J, Lonza D, Kiskinova M (1997) J Electron Spectrosc 84(1–3):73–83

    Article  CAS  Google Scholar 

  3. Locatelli A, Bianco A, Cocco D, Cherifi S, Heun S, Marsi M, Pasqualetto M, Bauer E (2003) J Phys IV 104:99–102

    Google Scholar 

  4. Siegbahn H, Siegbahn K (1973) J Electron Spectrosc 2:319–323

    Article  CAS  Google Scholar 

  5. Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Chem Soc Rev 42:5833–5857

    Article  CAS  PubMed  Google Scholar 

  6. Amati M, Abyaneh MK, Gregoratti L (2013) J Instrum 8:T05001

    Article  CAS  Google Scholar 

  7. Kolmakov A, Dikin D, Cote LJ, Huang J, Abyaneh MK, Amati M, Gregoratti L, Gunther S, Kiskinova M (2011) Nat Nanotechnol 6:651–657

    Article  CAS  PubMed  Google Scholar 

  8. Kiskinova M, Casalis L, Gregoratti L, Gunther S, Marsi M (1998) Mat Res Soc Symp Proc 524:203–214

    Article  CAS  Google Scholar 

  9. Gregoratti L, Barinov A, Benfatto E, Cautero G, Fava C, Lacovig P, Lonza D, Kiskinova M, Tommasini R, Mähl S, Heichler W (2004) Rev Sci Instrum 75:64–68

    Article  CAS  Google Scholar 

  10. Sezen H, Al-Hada M, Amati M, Gregoratti L (2017) Surf Interface Anal. https://doi.org/10.1002/sia.6276

    Article  Google Scholar 

  11. Sezen H, Alemán B, Amati M, Dalmiglio M, Gregoratti L (2015) ChemCatChem 7(22):3665–3673

    Article  CAS  Google Scholar 

  12. http://www.graphenea.com/. Accessed 2018

  13. Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Nano Lett 9:1472–1475

    Article  CAS  PubMed  Google Scholar 

  14. He Q, Sudibya GH, Yin S, Wu S, Li H, Boey F, Huang W (2010) ACS Nano 4:3201–3208

    Article  CAS  PubMed  Google Scholar 

  15. Li XY, Wei ZD, Zhao LQ, Ding W, Zhang Q, Chen SG (2011) Acta Phys-Chim Sin 27:858–862

    CAS  Google Scholar 

  16. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) J Am Chem Soc 133:7296–7299

    Article  CAS  PubMed  Google Scholar 

  17. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) Nanoscale 3:20–30

    Article  CAS  PubMed  Google Scholar 

  18. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) Nat Mater 14:271–279

    Article  CAS  PubMed  Google Scholar 

  19. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  20. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350–4358

    Article  CAS  PubMed  Google Scholar 

  21. Kundu P, Nethravathi C, Deshpande PA, Rajamathi M, Madras G, Ravishankar N (2011) Chem Mater 23:2772–2780

    Article  CAS  Google Scholar 

  22. Roccella D, Amati M, Sezen H, Brescia R, Gregoratti L (2017) Nano Res. https://doi.org/10.1007/s12274-017-1774-1

    Article  Google Scholar 

  23. Scardamaglia M, Aleman B, Amati M, Ewels C, Pochet P, Reckinger N, Colomer J, Skaltsas T, Tagmatarchis N, Snyders R, Gregoratti L, Bittencourt C (2014) Carbon 73:371–381

    Article  CAS  Google Scholar 

  24. Barinov A, Ustunel H, Fabris S, Gregoratti L, Aballe L, Dudin P, Baroni S, Kiskinova M (2007) Phys Rev Lett 99(4):046803

    Article  CAS  PubMed  Google Scholar 

  25. Barinov A, Malcioglu OB, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M (2009) J Phys Chem C 113(21):9009–9013

    Article  CAS  Google Scholar 

  26. Bittencourt C, Hecq M, Felten A, Pireaux JJ, Ghijsen J, Felicissimo MP, Rudolf P, Drube W, Ke X, Van Tendeloo G (2008) Chem Phys Lett 462(4):260–264

    Article  CAS  Google Scholar 

  27. Mason MG (1983) Phys Rev B 27:748

    Article  CAS  Google Scholar 

  28. Okamoto Y (2006) Chem Phys Lett 4–6:382–386

    Article  CAS  Google Scholar 

  29. Chi DH, Cuong NT, Kim NA, Tuan NA, Kim YT, Bao HT, Mitani T, Ozaki T, Nagao H (2006) Phys Lett 432:1–3

    Google Scholar 

  30. Bond GC, Coq Dutartre BR, Ruiz JG, Hooper AD, Proietti MG, Sierra MCS, Slaa JC (1996) J Catal 161:480–494

    Article  CAS  Google Scholar 

  31. Milone C, Neri G, Donato A, Musolino MG, Mercadante L (1996) J Catal 159:253–258

    Article  CAS  Google Scholar 

  32. McQuire MW, Rochester CH (1995) J Catal 157:136–399

    Article  Google Scholar 

  33. Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Science 287:1474–1476

    Article  CAS  PubMed  Google Scholar 

  34. Gustafson KPJ, Shatskiy A, Verho O, Kärkäs MD, Schluschass B, Tai CW, Åkermark B, Bäckvall JE, Johnston EV (2017) Catal Sci Technol 7:293–299

    Article  CAS  Google Scholar 

  35. Over H (2012) Chem Rev 112:3356–3426

    Article  CAS  PubMed  Google Scholar 

  36. Toyoshima R, Shimura M, Yoshida M, Monya Y, Suzuki K, Amemiya K, Mase K, Mun BS, Kondoh H (2014) Surf Sci 621:128–132

    Article  CAS  Google Scholar 

  37. Qadir K, Kim SM, Seo H, Mun BS, Akgul FA, Liu Z, Park JY (2013) J Phys Chem C 117:13108–13113

    Article  CAS  Google Scholar 

  38. Flege JI, Herd B, Goritzka J, Over H, Krasovskii EE, Falta J (2015) ACS Nano 9:8468–8473

    Article  CAS  PubMed  Google Scholar 

  39. Hrbek J, van Campen DG, Malik IJ (1995) J Vac Sci Technol A 13:1409

    Article  CAS  Google Scholar 

  40. Ernst MA, Sloof WG (2008) Surf Int Anal 40:334–337

    Article  CAS  Google Scholar 

  41. He YB, Knapp M, Lundgren E, Over H (2005) J Phys Chem B 109:21825–21830

    Article  CAS  PubMed  Google Scholar 

  42. Yeung H, Chan H, Takoudis CG, Weaver MJ (1997) J Catal 172:336–345

    Article  Google Scholar 

  43. Sezen H, Aleman B, Amati M, Dalmiglio M, Gregoratti L (2015) ChemCatChem 7:3665–3673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Elettra Sincrotrone Trieste for provision of synchrotron radiation facilities and we would like to thank all the supporting services for assistance in using the beamline Escamicroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gregoratti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregoratti, L., Al-Hada, M., Amati, M. et al. Spatially Resolved Photoelectron Spectroscopy from Ultra-high Vacuum to Near Ambient Pressure Sample Environments. Top Catal 61, 1274–1282 (2018). https://doi.org/10.1007/s11244-018-0982-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0982-6

Keywords

Navigation