Skip to main content

Advertisement

Log in

Monitoring and risk assessment of pesticide residue in plant-soil-groundwater systxem about medlar planting in Golmud

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Farm worker and consumers are vulnerable to the potentially toxic pesticides accumulated in the environment and food. Nonetheless, few studies have investigated the pesticide pollution and risk in the medlar planting site at a large scale. Hereupon, this study focused on the pesticide contamination distribution, their potential risk assessment of contaminated sites and dietary. The 11 pesticide pollution sources were collected from the five systems of fruit, leaf, soil, groundwater, and honey based on a systematic review in medlar planting site. Seventy-six samples were analyzed by chromatography technique. Residues of 4 (36.7%) compounds were found in the samples. The most distributed pesticides were imidacloprid for all samples, followed by avermectin for leaf, soil, groundwater, and honey, and carbendazim for leaf, glyphosate for soil, and those with the highest average concentrations were carbendazim (3.8–8.4 mg/kg of leaf) and glyphosate (0.21–1.3 mg/kg of soil). The vertical migration characteristic of imidacloprid was relatively stable, and the residual concentration gradually declined with the increase of burial depth. However, glyphosate tended to accumulate gradually or was close to the surface concentration with the increase of burial depth. The distribution of abamectin had no obvious regularity. Imidacloprid was lower than the MRL in fruit and honey. Imidacloprid, avermectin, and glyphosate no MRL in soil and groundwater are set. Using the monitoring data, potential health risk come from fruit, soil, and groundwater was evaluated. The HI and HQ could be considered safe for pesticide residues in fruit, soil, and groundwater. Even if these results are in general safe to eat, the effects of insecticide on human health, especially on genetic toxicity, have gradually aroused more attention. To minimize the increasing human health risk, this study suggests that authorities must regulate the usage of agrochemicals, to strengthen the controls for effective implementation of the pesticide bans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

This research is financially supported by the Natural Science Foundation of China (grants 41472220).

Author information

Authors and Affiliations

Authors

Contributions

Jing XY and Zhang WY planed and designed the research. Zhang WY, Lu T, and Dong QF was responsible for the work of risk assessment in revised manuscript. Xie JY was responsible for risk assessment in manuscript. Wang WJ conducted statistical analysis. Yang HB was responsible for chemical analysis.

Corresponding author

Correspondence to Hongbin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Lotfi Aleya

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, X., Zhang, W., Xie, J. et al. Monitoring and risk assessment of pesticide residue in plant-soil-groundwater systxem about medlar planting in Golmud. Environ Sci Pollut Res 28, 26413–26426 (2021). https://doi.org/10.1007/s11356-021-12403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12403-0

Keywords

Navigation