Skip to main content
Log in

Rapid tentative identification of synthetic cathinones in seized products taking advantage of the full capabilities of triple quadrupole analyzer

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

In this work, a new approach for synthetic cathinone identification in seized products, consisting of a rapid pseudo-target screening using liquid chromatography coupled to low-resolution tandem mass spectrometry (MS/MS), is proposed based on typical common product ions and neutral losses observed for this drug class.

Methods

The term “pseudo-target” screening indicates that although a pre-defined target compound list is not used, the search is limited to synthetic cathinones with expected common moieties. A total of 22 neutral losses and 36 common product ions were monitored and used for cathinone identification.

Results

In order to test the approach, 14 blind samples were analyzed and the results compared with high-resolution mass spectrometry data. From the data obtained, the different moieties of the cathinones (and therefore their structures) could be derived, allowing their tentative identification.

Conclusions

This methodology will be useful for the first and rapid synthetic cathinone detection in laboratories that have low-resolution MS/MS instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8:33–42. https://doi.org/10.1007/s13181-011-0193-z

    Article  PubMed  Google Scholar 

  2. Karila L, Megarbane B, Cottencin O, Lejoyeux M (2015) Synthetic cathinones: a new public health problem. Curr Neuropharmacol 13:12–20. https://doi.org/10.2174/1570159X13666141210224137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. European Monitoring Centre for Drugs and Drug Addiction (2017) European drug report 2017, 88th edn. EMCDDA–Europol joint publication, Lisbon. https://doi.org/10.2810/88175.

  4. Brandt SD, King LA, Evans-Brown M (2014) The new drug phenomenon. Drug Test Anal 6:587–597. https://doi.org/10.1002/dta.1686

    Article  CAS  PubMed  Google Scholar 

  5. Bijlsma L, Ibáñez M, Miserez B, Ma STF, Shine T, Ramsey J, Hernández F (2017) Mass spectrometric identification and structural analysis of the third-generation synthetic cannabinoids on the UK market since the 2013 legislative ban. Forensic Toxicol 35:376–388. https://doi.org/10.1007/s11419-017-0368-7

    Article  CAS  Google Scholar 

  6. United Nations Office on Drugs and Crime (UNODC) (2015) Recommended methods for the identification and analysis of synthetic cathinones in seized materials (ST/NAR/49). https://www.unodc.org/documents/scientific/STNAR49_Synthetic_Cathinones_E.pdf. Accessed 29 Nov 2017

  7. Majchrzak M, Celiński R, Kuś P, Kowalska T, Sajewicz M (2018) The newest cathinone derivatives as designer drugs: an analytical and toxicological review. Forensic Toxicol 36:33–50. https://doi.org/10.1007/s11419-017-0385-6

    Article  CAS  PubMed  Google Scholar 

  8. Brandt SD, Daley PF, Cozzi NV (2012) Analytical characterization of three trifluoromethyl-substituted methcathinone isomers. Drug Test Anal 4:525–529. https://doi.org/10.1002/dta.382

    Article  CAS  PubMed  Google Scholar 

  9. Tsujikawa K, Mikuma T, Kuwayama K, Miyaguchi H, Kanamori T, Iwata YT, Inoue H (2013) Identification and differentiation of methcathinone analogs by gas chromatography-mass spectrometry. Drug Test Anal 5:670–677. https://doi.org/10.1002/dta.1437

    Article  CAS  PubMed  Google Scholar 

  10. Nic Daeid N, Savage KA, Ramsay D, Holland C, Sutcliffe OB (2014) Development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 16 ‘legal high’ cathinone derivatives. Sci Justice 54:22–31. https://doi.org/10.1016/j.scijus.2013.08.004

    Article  PubMed  Google Scholar 

  11. Carnes S, O’Brien S, Szewczak A, Tremesu-Cayel L, Rowe WF, McCord B, Lurie IS (2017) Comparison of ultra-high performance supercritical fluid chromatography, ultra-high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones. J Sep Sci 40:3545–3556. https://doi.org/10.1002/jssc.201700349

    Article  CAS  PubMed  Google Scholar 

  12. De Vijlder T, Valkenborg D, Lemière F, Romijin EP, Laukens K, Cuyckens F (2017) A tutorial in small molecule identification via electrospray ionization-mass spectrometry: the practical art of structural elucidation. Mass Spectrom Rev. https://doi.org/10.1002/mas.21551

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ibañez M, Sancho JV, Bijlsma L, van Nuijs A, Covaci A, Hernández F (2014) Comprehensive analytical strategies based on high-resolution time-of-flight mass spectrometry to identify new psychoactive substances. Trends Anal Chem 57:107–117. https://doi.org/10.1016/j.trac.2014.02.009

    Article  CAS  Google Scholar 

  14. Strano Rossi S, Odoardi S, Gregori A, Peluso G, Ripani L, Ortar G, Serpelloni G, Romolo FS (2014) An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun Mass Spectrom 28:1904–1916. https://doi.org/10.1002/rcm.6969

    Article  CAS  PubMed  Google Scholar 

  15. Lobo Vicente J, Chassaigne H, Holland MV, Reniero F, Kolář K, Tirendi S, Vandecasteele I, Vinckier I, Guillou C (2016) Systematic analytical characterization of new psychoactive substances: a case study. Forensic Sci Int 265:107–115. https://doi.org/10.1016/j.forsciint.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  16. Liu C, Jia W, Li T, Hua Z, Qian Z (2017) Identification and analytical characterization of nine synthetic cathinone derivatives N-ethylhexedrone, 4-Cl-pentedrone, 4-Cl-α-EAPP, propylone, N-ethylnorpentylone, 6-MeO-bk-MDMA, α-PiHP, 4-Cl-α-PHP, and 4-F-α-PHP. Drug Test Anal 9:1162–1171. https://doi.org/10.1002/dta.2136

    Article  CAS  PubMed  Google Scholar 

  17. Qian Z, Jia W, Li T, Liu C, Hua Z (2017) Identification and analytical characterization of four synthetic cathinone derivatives iso-4-BMC, β-TH-naphyrone, mexedrone, and 4-MDMC. Drug Test Anal 9:274–281. https://doi.org/10.1002/dta.1983

    Article  CAS  PubMed  Google Scholar 

  18. Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos M (2017) The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci Int 279:192–202. https://doi.org/10.1016/j.forsciint.2017.08.031

    Article  CAS  PubMed  Google Scholar 

  19. Lendoiro E, Jiménez-Morigosa C, Cruz A, Páramo M, López-Rivadulla M, de Castro A (2017) An LC–MS/MS methodological approach to the analysis of hair for amphetamine-type-stimulant (ATS) drugs, including selected synthetic cathinones and piperazines. Drug Test Anal 9:96–105. https://doi.org/10.1002/dta.1948

    Article  CAS  PubMed  Google Scholar 

  20. Adamowicz P, Tokarczyk B (2016) Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography-tandem mass spectrometry. Drug Test Anal 8:652–667. https://doi.org/10.1002/dta.1815

    Article  CAS  PubMed  Google Scholar 

  21. Bade R, Bijlsma L, Sancho JV, Baz-Lomba JA, Castiglioni S, Castrignanò E, Causanilles A, Gracia-Lor E, Kasprzyk-Hordern B, Kinyua J, McCall A-K, van Nuijs ALN, Ort C, Plósz BG, Ramin P, Rousis NI, Ryu Y, Thomas KV, de Voogt P, Zuccato E, Hernández F (2017) Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethylamines in influent wastewater of eight European cities. Chemosphere 168:1032–1041. https://doi.org/10.1016/j.chemosphere.2016.10.107

    Article  CAS  PubMed  Google Scholar 

  22. Marcos J, Pozo OJ (2016) Current LC–MS methods and procedures applied to the identification of new steroid metabolites. J Steroid Biochem Mol Biol 162:41–56. https://doi.org/10.1016/j.jsbmb.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  23. Pozo OJ, Ventura R, Monfort N, Segura J, Delbeke FT (2009) Evaluation of different scan methods for the urinary detection of corticosteroid metabolites by liquid chromatography tandem mass spectrometry. J Mass Spectrom 44:929–944. https://doi.org/10.1002/jms.1568

    Article  CAS  PubMed  Google Scholar 

  24. McLeod MD, Waller CC, Esquivel A, Balcells G, Ventura R, Segura J, Pozo OJ (2017) Constant ion loss method for the untargeted detection of bis-sulfate metabolites. Anal Chem 89:1602–1609. https://doi.org/10.1021/acs.analchem.6b03671

    Article  CAS  PubMed  Google Scholar 

  25. Fornal E (2014) Study of collision-induced dissociation of electrospray-generated protonated cathinones. Drug Test Anal 6:705–715. https://doi.org/10.1002/dta.1573

    Article  CAS  PubMed  Google Scholar 

  26. González D, Ventura M, Caudevilla F, Torrens M, Farre M (2013) Consumption of new psychoactive substances in a Spanish sample of research chemical users. Hum Psychopharmacol Clin Exp 28:332–340. https://doi.org/10.1002/hup.2323

    Article  Google Scholar 

  27. European Monitoring Centre for Drugs and Drug Addiction (2015) Synthetic cathinones drug profile. http://www.emcdda.europa.eu/publications/drug-profiles/synthetic-cathinones. Accessed 28 Nov 2017

  28. Gambaro V, Casagni E, Dell’Acqua L, Roda G, Tamborini L, Visconti GL, Demartin F (2016) Identification and characterization of a new designer drug thiothinone in seized products. Forensic Toxicol 34:174–178. https://doi.org/10.1007/s11419-015-0289-2

  29. Doi T, Asada A, Takeda A, Tagami T, Katagi M, Matsuta S, Kamata H, Kawaguchi M, Satsuki Y, Sawabe Y, Obana H (2016) Identification and characterization of α-PVT, α-PBT, and their bromothienyl analogs found in illicit drug products. Forensic Toxicol 34:76–93. https://doi.org/10.1007/s11419-015-0288-3

    Article  CAS  Google Scholar 

  30. Zuba D (2012) Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Anal Chem 32:15–30. https://doi.org/10.1016/j.trac.2011.09.009

    Article  CAS  Google Scholar 

  31. Fornal E (2013) Identification of substituted cathinones: 3,4-methylenedioxy derivatives by high performance liquid chromatography–quadrupole time of flight mass spectrometry. J Pharm Biomed Anal 81-82:13–19. https://doi.org/10.1016/j.jpba.2013.03.016

    Article  CAS  PubMed  Google Scholar 

  32. Fabregat-Safont D, Carbón X, Gil C, Ventura M, Sancho JV, Hernández F, Ibañez M (2018) Reporting the novel synthetic cathinone 5-PPDI through its analytical characterization by mass spectrometry and nuclear magnetic resonance. Forensic Toxicol 36:447–457. https://doi.org/10.1007/s11419-018-0422-0

    Article  CAS  Google Scholar 

  33. Qian Z, Jia W, Li T, Hua Z, Liu C (2017) Identification of five pyrrolidinyl substituted cathinones and the collision-induced dissociation of electrospray-generated pyrrolidinyl substituted cathinones. Drug Test Anal 9:778–787. https://doi.org/10.1002/dta.2035

    Article  CAS  PubMed  Google Scholar 

  34. Ibáñez M, Pozo ÓJ, Sancho JV, Orengo T, Haro G, Hernández F (2016) Analytical strategy to investigate 3,4-methylenedioxypyrovalerone (MDPV) metabolites in consumers’ urine by high-resolution mass spectrometry. Anal Bioanal Chem 408:151–164. https://doi.org/10.1007/s00216-015-9088-1

    Article  CAS  PubMed  Google Scholar 

  35. Nycz JE, Pazdziorek T, Malecki G, Szala M (2016) Identification and derivatization of selected cathinones by spectroscopic studies. Forensic Sci Int 266:416–426. https://doi.org/10.1016/j.forsciint.2016.06.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Generalitat Valenciana (Group of Excellence Prometeo II 2014/023) and from the Ministerio de Economía y Competitividad in Spain (Project: CTQ2015-65603-P). The authors also acknowledge NPS-Euronet (HOME/2014/JDRUG/AG/DRUG/7086), co-funded by the European Union. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use which may be made of the information contained therein. D. Fabregat-Safont acknowledges Ministerio de Educación, Cultura y Deporte in Spain for his predoctoral grant (Grant FPU15/02033). Authors also acknowledge Energy Control for providing the research chemical samples used for testing the pseudo-target screening strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Ibáñez.

Ethics declarations

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabregat-Safont, D., Sancho, J.V., Hernández, F. et al. Rapid tentative identification of synthetic cathinones in seized products taking advantage of the full capabilities of triple quadrupole analyzer. Forensic Toxicol 37, 34–44 (2019). https://doi.org/10.1007/s11419-018-0432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-018-0432-y

Keywords

Navigation