Skip to main content
Log in

Photocatalytic single electron transfer reactions on TiO2 semiconductor

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The use of inorganic semiconductor particles such as titanium dioxide (TiO2) has received relatively less attention in organic chemistry, although semiconductor particles have been widely used as a single electron transfer photocatalyst in water-purification, air-cleaning, and self-cleaning. In recent years, the photocatalysis on semiconductor particles has become an active area of research even in organic chemistry, since the heterogeneous semiconductor photocatalysis leads to the unique redox organic reactions. In an early stage, the semiconductor photocatalysis was applied to the oxidation of organic molecules. Semiconductor particles have also the potential to induce the reductive chemical transformations in the absence of oxygen (O2), by using the suitable sacrificial hole scavenger. In this review, we summarize the representative examples of the reductive and oxidative organic reactions using semiconductor particles and the recent applications to the stereoselective reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima A, Honda K. Nature, 1972, 238: 37–38

    CAS  Google Scholar 

  2. Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253–278

    CAS  PubMed  Google Scholar 

  3. Fujishima A, Zhang X, Tryk D. Int J Hydrogen Energy, 2007, 32: 2664–2672

    CAS  Google Scholar 

  4. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Chem Rev, 1995, 95: 69–96

    CAS  Google Scholar 

  5. Fox MA. Top Curr Chem, 1987, 142: 72–99

    Google Scholar 

  6. Kisch H. Adv Photochem, 2001, 26: 93–143

    CAS  Google Scholar 

  7. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L. Chem Commun, 2007, 95: 3425

    Google Scholar 

  8. Shiraishi Y, Hirai T. J Photochem Photobiol C-Photochem Rev, 2008, 9: 157–170

    CAS  Google Scholar 

  9. Palmisano G, García-López E, Marcì G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L. Chem Commun, 2010, 46: 7074–7089

    CAS  Google Scholar 

  10. Kohtani S, Yoshioka E, Miyabe H. Photocatalytic hydrogenation on semiconductor particles. In: Karamé I, Ed. HyDrogenation. Rijeka: Intech, 2012. 291–308

    Google Scholar 

  11. Lang X, Chen X, Zhao J. Chem Soc Rev, 2014, 43: 473–486

    CAS  PubMed  Google Scholar 

  12. Lang X, Ma W, Chen C, Ji H, Zhao J. Acc Chem Res, 2014, 47: 355–363

    CAS  PubMed  Google Scholar 

  13. Kisch H. Acc Chem Res, 2017, 50: 1002–1010

    CAS  PubMed  Google Scholar 

  14. Ma D, Liu A, Li S, Lu C, Chen C. Catal Sci Technol, 2018, 8: 2030–2045

    CAS  Google Scholar 

  15. Wang Y, Liu A, Ma D, Li S, Lu C, Li T, Chen C. Catalysts, 2018, 8: 355

    Google Scholar 

  16. Cuendet P, Graetzel M. J Phys Chem, 1987, 91: 654–657

    CAS  Google Scholar 

  17. Joyce-Pruden C, Pross JK, Li Y. J Org Chem, 1992, 57: 5087–5091

    CAS  Google Scholar 

  18. Matsushita Y, Kumada S, Wakabayashi K, Sakeda K, Ichimura T. Chem Lett, 2006, 35: 410–411

    CAS  Google Scholar 

  19. Baker LR, Kennedy G, van Spronsen M, Hervier A, Cai X, Chen S, Wang LW, Somorjai GA. J Am Chem Soc, 2012, 134: 14208–14216

    CAS  PubMed  Google Scholar 

  20. Park JW, Hong MJ, Park KK. Bull Korean Chem Soc, 2001, 22: 1213–1216

    CAS  Google Scholar 

  21. Park JW, Kim EK, Park KK. Bull Korean Chem Soc, 2002, 23: 1229–1234

    CAS  Google Scholar 

  22. Kohtani S, Yoshioka E, Saito K, Kudo A, Miyabe H. Catal Commun, 2010, 11: 1049–1053

    CAS  Google Scholar 

  23. Kohtani S, Yoshioka E, Saito K, Kudo A, Miyabe H. J Phys Chem C, 2012, 116: 17705–17713

    CAS  Google Scholar 

  24. Kohtani S, Nishioka S, Yoshioka E, Miyabe H. Catal Commun, 2014, 43: 61–65

    CAS  Google Scholar 

  25. Kohtani S, Kamoi Y, Yoshioka E, Miyabe H. Catal Sci Technol, 2014, 4: 1084–1091

    CAS  Google Scholar 

  26. Kohtani S, Kurokawa T, Yoshioka E, Miyabe H. Appl Catal A-Gen, 2016, 521: 68–74

    CAS  Google Scholar 

  27. Kominami H, Yamamoto S, Imamura K, Tanaka A, Hashimoto K. Chem Commun, 2014, 50: 4558–4560

    CAS  Google Scholar 

  28. Mahdavi F, Bruton TC, Li Y. J Org Chem, 1993, 58: 744–746

    CAS  Google Scholar 

  29. Brezová V, Blažková A, Ŝurina I, Havlínová B. J Photochem Photobiol A-Chem, 1997, 107: 233–237

    Google Scholar 

  30. Ferry JL, Glaze WH. J Phys Chem B, 1998, 102: 2239–2244

    CAS  Google Scholar 

  31. Ferry JL, Glaze WH. Langmuir, 1998, 14: 3551–3555

    CAS  Google Scholar 

  32. Flores SO, Rios-Bernij O, Valenzuela MA, Córdova I, Gómez R, Gutiérrez R. Top Catal, 2007, 44: 507–511

    CAS  Google Scholar 

  33. Kominami H, Iwasaki S, Maeda T, Imamura K, Hashimoto K, Kera Y, Ohtani B. Chem Lett, 2009, 38: 410–411

    CAS  Google Scholar 

  34. Wang H, Partch RE, Li Y. J Org Chem, 1997, 62: 5222–5225

    CAS  Google Scholar 

  35. Park KH, Joo HS, Ahn KI, Jun K. Tetrahedron Lett, 1995, 36: 5943–5946

    CAS  Google Scholar 

  36. He L, Wang JQ, Gong Y, Liu YM, Cao Y, He HY, Fan KN. Angew Chem Int Ed, 2011, 50: 10216–10220

    CAS  Google Scholar 

  37. Tang L, Guo X, Yang Y, Zha Z, Wang Z. Chem Commun, 2014, 50: 6145–6148

    CAS  Google Scholar 

  38. Tada H, Ishida T, Takao A, Ito S, Mukhopadhyay S, Akita T, Tanaka K, Kobayashi H. ChemPhysChem, 2005, 6: 1537–1543

    CAS  PubMed  Google Scholar 

  39. Wang H, Yan J, Chang W, Zhang Z. Catal Commun, 2009, 10: 989–994

    CAS  Google Scholar 

  40. Füldner S, Mild R, Siegmund HI, Schroeder JA, Gruber M, König B. Green Chem, 2010, 12: 400–406

    Google Scholar 

  41. Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T. ACS Catal, 2012, 2: 2475–2481

    CAS  Google Scholar 

  42. Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H. Chem Commun, 2013, 49: 2551–2553

    CAS  Google Scholar 

  43. Tsutsumi K, Uchikawa F, Sakai K, Tabata K. ACS Catal, 2016, 6: 4394–4398

    CAS  Google Scholar 

  44. Ohtani B, Goto Y, Nishimoto SI, Inui T. Faraday Trans, 1996, 92: 4291–4295

    CAS  Google Scholar 

  45. Liang S, Monsen P, Hammond GB, Xu B. Org Chem Front, 2016, 3: 505–509

    CAS  Google Scholar 

  46. Nishimoto S, Ohtani B, Yoshikawa T, Kagiya T. J Am Chem Soc, 1983, 105: 7180–7182

    CAS  Google Scholar 

  47. Shiraishi Y, Tsukamoto D, Sugano Y, Shiro A, Ichikawa S, Tanaka S, Hirai T. ACS Catal, 2012, 2: 1984–1992

    CAS  Google Scholar 

  48. Pal B, Ikeda S, Kominami H, Kera Y, Ohtani B. J Catal, 2003, 217: 152–159

    CAS  Google Scholar 

  49. Ohtani B, Pal B, Ikeda S. Catal Surveys from Asia, 2003, 7: 165–176

    CAS  Google Scholar 

  50. Shiraishi Y, Fujiwara K, Sugano Y, Ichikawa S, Hirai T. ACS Catal, 2013, 3: 312–320

    CAS  Google Scholar 

  51. Tsarev VN, Morioka Y, Caner J, Wang Q, Ushimaru R, Kudo A, Naka H, Saito S. Org Lett, 2015, 17: 2530–2533

    CAS  PubMed  Google Scholar 

  52. Tang L, Yang Y, Wen L, Zhang S, Zha Z, Wang Z. Org Chem Front, 2015, 2: 114–118

    Google Scholar 

  53. Xi ZW, Yang L, Wang DY, Pu CD, Shen YM, Wu CD, Peng XG. J Org Chem, 2018, 83: 11886–11895

    CAS  PubMed  Google Scholar 

  54. Imamura K, Yoshikawa T, Nakanishi K, Hashimoto K, Kominami H. Chem Commun, 2013, 49: 10911–10913

    CAS  Google Scholar 

  55. McTiernan CD, Pitre SP, Ismaili H, Scaiano JC. Adv Synth Catal, 2014, 356: 2819–2824

    CAS  Google Scholar 

  56. Riente P, Pericàs MA. ChemSusChem, 2015, 8: 1841–1844

    CAS  PubMed  Google Scholar 

  57. Mao LL, Cong H. ChemSusChem, 2017, 10: 4461–4464

    CAS  PubMed  Google Scholar 

  58. Zoller J, Fabry DC, Rueping M. ACS Catal, 2015, 5: 3900–3904

    CAS  Google Scholar 

  59. Ren L, Cong H. Org Lett, 2018, 20: 3225–3228

    CAS  PubMed  Google Scholar 

  60. Hodgson GK, Scaiano JC. ACS Catal, 2018, 8: 2914–2922

    CAS  Google Scholar 

  61. Shimakoshi H, Hisaeda Y. Angew Chem Int Ed, 2015, 54: 15439–15443

    CAS  Google Scholar 

  62. Wada E, Tyagi A, Yamamoto A, Yoshida H. Photochem Photobiol Sci, 2017, 16: 1744–1748

    CAS  PubMed  Google Scholar 

  63. Lang X, Leow WR, Zhao J, Chen X. Chem Sci, 2015, 6: 1075–1082

    CAS  PubMed  Google Scholar 

  64. Lang X, Hao W, Leow WR, Li S, Zhao J, Chen X. Chem Sci, 2015, 6: 5000–5005

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lang X, Zhao J, Chen X. Angew Chem Int Ed, 2016, 55: 4697–4700

    CAS  Google Scholar 

  66. Bhat VT, Duspara PA, Seo S, Abu Bakar NSB, Greaney MF. Chem Commun, 2015, 51: 4383–4385

    CAS  Google Scholar 

  67. Aldemir M, Heinemann FW, Kisch H. Photochem Photobiol Sci, 2012, 11: 908–913

    CAS  PubMed  Google Scholar 

  68. Manley DW, McBurney RT, Miller P, Howe RF, Rhydderch S, Walton JC. J Am Chem Soc, 2012, 134: 13580–13583

    CAS  PubMed  Google Scholar 

  69. Manley DW, McBurney RT, Miller P, Walton JC, Mills A, O’Rourke C. J Org Chem, 2014, 79: 1386–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang J, Grampp G, Liu Y, Wang BX, Tao FF, Wang LJ, Liang XZ, Xiao HQ, Shen YM. J Org Chem, 2015, 80: 2724–2732

    CAS  PubMed  Google Scholar 

  71. Wang J, Mao C, Feng P, Zheng N. Chem Eur J, 2017, 23: 15396–15403

    CAS  PubMed  Google Scholar 

  72. Okada Y, Maeta N, Nakayama K, Kamiya H. J Org Chem, 2018, 83: 4948–4962

    CAS  PubMed  Google Scholar 

  73. Nakayama K, Maeta N, Horiguchi G, Kamiya H, Okada Y. Org Lett, 2019, 21: 2246–2250

    CAS  PubMed  Google Scholar 

  74. Liu W, Wang C, Wang L. Ind Eng Chem Res, 2017, 56: 6114–6123

    CAS  Google Scholar 

  75. Marinković S, Hoffmann N. Chem Commun, 2001, 1576–1578

  76. Marinković S, Hoffmann N. Int J Photoenergy, 2003, 5: 175–182

    Google Scholar 

  77. Marinković S, Hoffmann N. Eur J Org Chem, 2004, 2004(14): 3102–3107

    Google Scholar 

  78. Wang H, Sakata T, Azuma M, Ohta T, Takaya H. Chem Lett, 1990, 19: 1331–1334

    Google Scholar 

  79. Ho XH, Kang MJ, Kim SJ, Park ED, Jang HY. Catal Sci Technol, 2011, 1: 923–926

    CAS  Google Scholar 

  80. Yoon HS, Ho XH, Jang J, Lee HJ, Kim SJ, Jang HY. Org Lett, 2012, 14: 3272–3275

    CAS  PubMed  Google Scholar 

  81. Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew Chem Int Ed, 2012, 51: 4062–4066

    CAS  Google Scholar 

  82. Riente P, Matas Adams A, Albero J, Palomares E, Pericàs MA. Angew Chem Int Ed, 2014, 53: 9613–9616

    CAS  Google Scholar 

  83. Li X, Wang J, Xu D, Sun Z, Zhao Q, Peng W, Li Y, Zhang G, Zhang F, Fan X. ACS Sustain Chem Eng, 2015, 3: 1017–1022

    CAS  Google Scholar 

  84. Kohtani S, Kawashima A, Masuda F, Sumi M, Kitagawa Y, Yoshioka E, Hasegawa Y, Miyabe H. Chem Commun, 2018, 54: 12610–12613

    CAS  Google Scholar 

  85. Weng B, Qi MY, Han C, Tang ZR, Xu YJ. ACS Catal, 2019, 9: 4642–4687

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) (16K08188, 19K05681).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideto Miyabe or Shigeru Kohtani.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyabe, H., Kohtani, S. Photocatalytic single electron transfer reactions on TiO2 semiconductor. Sci. China Chem. 62, 1439–1449 (2019). https://doi.org/10.1007/s11426-019-9626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9626-9

Keywords

Navigation