Skip to main content
Log in

Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The inflammatory environment and existence of cancer stem cells are critical for progression and intrahepatic recurrence of hepatocellular carcinoma (HCC) after curative resections. Here, we investigated the prognostic significance of combining high mobility group box 1 (HMGB1) expression and hepatic progenitor marker OV6 in hepatocellular carcinoma. Expression of HMGB1 and OV6 was evaluated using immunohistochemistry profiling in tissue microarrays containing samples from 208 HCC patients. Invasive clinical or pathological factors were found in patients with high expression of HMGB1 or OV6. Higher HMGB1 was associated with poorer clinical outcomes, and independently related to elevated 5-year recurrence incidence (85.5% vs. 62.4%, P<0.001). We also found that more OV6 positive staining was correlated with poor prognosis of HCC patients (P<0.001). Notably, expression of HMGB1 was positively correlated with OV6 in density (R2=0.032, P<0.001) and reversely related to HCC outcomes. Abnormal expression of HMGB1 in combination with positive staining of OV6 displayed poorer prognostic performance than single biomarker alone (area under curve (AUC) survival=0.696). Therefore, HMGB1 and OV6 positive staining are promising prognostic parameters for HCC, and we propose that HMGB1 and OV6 may cooperate with each other and predict poor prognosis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegra, C.J., Jessup, J.M., Somerfield, M.R., Hamilton, S.R., Hammond, E.H., Hayes, D.F., McAllister, P.K., Morton, R.F., and Schilsky, R.L. (2009). American Society of Clinical Oncology Provisional Clinical Opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27, 2091–2096.

    Article  PubMed  Google Scholar 

  • Aravalli, R.N., Steer, C.J., and Cressman, E.N.K. (2008). Molecular mechanisms of hepatocellular carcinoma. Hepatology 48, 2047–2063.

    Article  PubMed  CAS  Google Scholar 

  • Bassi, R., Giussani, P., Anelli, V., Colleoni, T., Pedrazzi, M., Patrone, M., Viani, P., Sparatore, B., Melloni, E., and Riboni, L. (2008). HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J Neurooncol 87, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Brezniceanu, M.L., Volp, K., Bosser, S., Solbach, C., Lichter, P., Joos, S., and Zornig, M. (2003). HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 17, 1295–1297.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Dong, Z., Yang, P., Wang, X., Jin, G., Yu, H., Chen, L., Li, L., Tang, L., Bai, S., Yan, H., Shen, F., Cong, W., Wen, W., and Wang, H. (2017). Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett 394, 22–32.

    Article  PubMed  CAS  Google Scholar 

  • Dukic-Stefanovic, S., Gasic-Milenkovic, J., Deuther-Conrad, W., and Münch, G. (2003). Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (AGEs). J Neurochem 87, 44–55.

    Article  PubMed  CAS  Google Scholar 

  • Ellerman, J.E., Brown, C.K., de Vera, M., Zeh, H.J., Billiar, T., Rubartelli, A., and Lotze, M.T. (2007). Masquerader: high mobility group Box-1 and cancer. Clin Cancer Res 13, 2836–2848.

    Article  PubMed  CAS  Google Scholar 

  • Gerlinger, M., Rowan, A.J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A. C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., and Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366, 883–892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., Neurath, M.F., Slattery, T., Beach, D., McClary, J., Nagashima, M., Morser, J., Stern, D., and Schmidt, A.M. (1999). RAGE mediates a novel proinflammatory axis. Cell 97, 889–901.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, B.I., Kalea, A.Z., Del Mar Arriero, M., Harja, E., Boulanger, E., D’Agati, V., and Schmidt, A.M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283, 34457–34468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huttunen, H.J., Kuja-Panula, J., Sorci, G., Agneletti, A.L., Donato, R., and Rauvala, H. (2000). Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275, 40096–40105.

    Article  PubMed  CAS  Google Scholar 

  • Jain, K.K. (2007). Cancer biomarkers: current issues and future directions. Curr Opin Mol Ther 9, 563–571.

    PubMed  CAS  Google Scholar 

  • Jordan, C.T., Guzman, M.L., and Noble, M. (2006). Cancer stem cells. N Engl J Med 355, 1253–1261.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.Y., Park, H.K., Yoon, J.S., Kim, S.J., Kim, E.S., Ahn, K.S., Kim, D. S., Yoon, S.S., Kim, B.K., and Lee, Y.Y. (2008). Advanced glycation end product (AGE)-induced proliferation of HEL cells via receptor for AGE-related signal pathways. Int J Oncol 33, 493–501.

    PubMed  CAS  Google Scholar 

  • Li, X.F., Chen, C., Xiang, D.M., Qu, L., Sun, W., Lu, X.Y., Zhou, T.F., Chen, S.Z., Ning, B.F., Cheng, Z., Xia, M.Y., Shen, W.F., Yang, W., Wen, W., Lee, T.K.W., Cong, W.M., Wang, H.Y., and Ding, J. (2017). Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance. Hepatology in press doi: 10.1002/hep.29372.

    Google Scholar 

  • Ling, S., Hu, Z., Yang, Z., Yang, F., Li, Y., Lin, P., Chen, K., Dong, L., Cao, L., Tao, Y., Hao, L., Chen, Q., Gong, Q., Wu, D., Li, W., Zhao, W., Tian, X., Hao, C., Hungate, E.A., Catenacci, D.V.T., Hudson, R.R., Li, W.H., Lu, X., and Wu, C.I. (2015). Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci USA 112, e6496–E6505.

    Article  PubMed  CAS  Google Scholar 

  • Llovet, J.M., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M., and Gores, G. (2016). Hepatocellular carcinoma. Nat Rev Dis Primers 2, 16018.

    Article  PubMed  Google Scholar 

  • Magna, M., and Pisetsky, D.S. (2014). The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20, 1–146.

    Article  CAS  Google Scholar 

  • Medema, J.P. (2013). Cancer stem cells: the challenges ahead. Nat Cell Biol 15, 338–344.

    Article  PubMed  CAS  Google Scholar 

  • Murray, C.J.L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A.D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J.A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S.Y., Ali, M.K., AlMazroa, M.A., Alvarado, M., Anderson, H.R., Anderson, L.M., Andrews, K.G., Atkinson, C., Baddour, L.M., Bahalim, A.N., Barker-Collo, S., Barrero, L.H., Bartels, D.H., Basáñez, M.G., Baxter, A., Bell, M.L., Benjamin, E.J., Bennett, D., Bernabé, E., Bhalla, K., Bhandari, B., Bikbov, B., Abdulhak, A.B., Birbeck, G., Black, J.A., Blencowe, H., Blore, J.D., Blyth, F., Bolliger, I., Bonaventure, A., Boufous, S., Bourne, R., Boussinesq, M., Braithwaite, T., Brayne, C., Bridgett, L., Brooker, S., Brooks, P., Brugha, T.S., Bryan-Hancock, C., Bucello, C., Buchbinder, R., Buckle, G., Budke, C.M., Burch, M., Burney, P., Burstein, R., Calabria, B., Campbell, B., Canter, C.E., Carabin, H., Carapetis, J., Carmona, L., Cella, C., Charlson, F., Chen, H., Cheng, A.T. A., Chou, D., Chugh, S.S., Coffeng, L.E., Colan, S.D., Colquhoun, S., Colson, K.E., Condon, J., Connor, M.D., Cooper, L.T., Corriere, M., Cortinovis, M., de Vaccaro, K.C., Couser, W., Cowie, B.C., Criqui, M. H., Cross, M., Dabhadkar, K.C., Dahiya, M., Dahodwala, N., Damsere-Derry, J., Danaei, G., Davis, A., Leo, D.D., Degenhardt, L., Dellavalle, R., Delossantos, A., Denenberg, J., Derrett, S., Des Jarlais, D.C., Dharmaratne, S.D., Dherani, M., Diaz-Torne, C., Dolk, H., Dorsey, E.R., Driscoll, T., Duber, H., Ebel, B., Edmond, K., Elbaz, A., Ali, S.E., Erskine, H., Erwin, P.J., Espindola, P., Ewoigbokhan, S.E., Farzadfar, F., Feigin, V., Felson, D.T., Ferrari, A., Ferri, C.P., Fèvre, E.M., Finucane, M.M., Flaxman, S., Flood, L., Foreman, K., Forouzanfar, M.H., Fowkes, F.G.R., Fransen, M., Freeman, M.K., Gabbe, B.J., Gabriel, S. E., Gakidou, E., Ganatra, H.A., Garcia, B., Gaspari, F., Gillum, R.F., Gmel, G., Gonzalez-Medina, D., Gosselin, R., Grainger, R., Grant, B., Groeger, J., Guillemin, F., Gunnell, D., Gupta, R., Haagsma, J., Hagan, H., Halasa, Y.A., Hall, W., Haring, D., Haro, J.M., Harrison, J.E., Havmoeller, R., Hay, R.J., Higashi, H., Hill, C., Hoen, B., Hoffman, H., Hotez, P.J., Hoy, D., Huang, J.J., Ibeanusi, S.E., Jacobsen, K.H., James, S.L., Jarvis, D., Jasrasaria, R., Jayaraman, S., Johns, N., Jonas, J.B., Karthikeyan, G., Kassebaum, N., Kawakami, N., Keren, A., Khoo, J.P., King, C.H., Knowlton, L.M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., Laden, F., Lalloo, R., Laslett, L.L., Lathlean, T., Leasher, J. L., Lee, Y.Y., Leigh, J., Levinson, D., Lim, S.S., Limb, E., Lin, J.K., Lipnick, M., Lipshultz, S.E., Liu, W., Loane, M., Ohno, S.L., Lyons, R., Mabweijano, J., MacIntyre, M.F., Malekzadeh, R., Mallinger, L., Manivannan, S., Marcenes, W., March, L., Margolis, D.J., Marks, G.B., Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B.M., McAnulty, J.H., McDermott, M.M., McGill, N., McGrath, J., Medina-Mora, M.E., Meltzer, M., Memish, Z.A., Mensah, G.A., Merriman, T.R., Meyer, A. C., Miglioli, V., Miller, M., Miller, T.R., Mitchell, P.B., Mock, C., Mocumbi, A.O., Moffitt, T.E., Mokdad, A.A., Monasta, L., Montico, M., Moradi-Lakeh, M., Moran, A., Morawska, L., Mori, R., Murdoch, M.E., Mwaniki, M.K., Naidoo, K., Nair, M.N., Naldi, L., Narayan, K.M.V., Nelson, P.K., Nelson, R.G., Nevitt, M.C., Newton, C.R., Nolte, S., Norman, P., Norman, R., O’Donnell, M., O’Hanlon, S., Olives, C., Omer, S.B., Ortblad, K., Osborne, R., Ozgediz, D., Page, A., Pahari, B., Pandian, J.D., Rivero, A.P., Patten, S.B., Pearce, N., Padilla, R.P., Perez-Ruiz, F., Perico, N., Pesudovs, K., Phillips, D., Phillips, M.R., Pierce, K., Pion, S., Polanczyk, G.V., Polinder, S., Pope Iii, C.A., Popova, S., Porrini, E., Pourmalek, F., Prince, M., Pullan, R.L., Ramaiah, K.D., Ranganathan, D., Razavi, H., Regan, M., Rehm, J.T., Rein, D.B., Remuzzi, G., Richardson, K., Rivara, F.P., Roberts, T., Robinson, C., De Leòn, F.R., Ronfani, L., Room, R., Rosenfeld, L.C., Rushton, L., Sacco, R.L., Saha, S., Sampson, U., Sanchez-Riera, L., Sanman, E., Schwebel, D.C., Scott, J.G., Segui-Gomez, M., Shahraz, S., Shepard, D.S., Shin, H., Shivakoti, R., Silberberg, D., Singh, D., Singh, G.M., Singh, J.A., Singleton, J., Sleet, D.A., Sliwa, K., Smith, E., Smith, J.L., Stapelberg, N.J., Steer, A., Steiner, T., Stolk, W.A., Stovner, L.J., Sudfeld, C., Syed, S., Tamburlini, G., Tavakkoli, M., Taylor, H.R., Taylor, J.A., Taylor, W. J., Thomas, B., Thomson, W.M., Thurston, G.D., Tleyjeh, I.M., Tonelli, M., Towbin, J.A., Truelsen, T., Tsilimbaris, M.K., Ubeda, C., Undurraga, E.A., van der Werf, M.J., van Os, J., Vavilala, M.S., Venketasubramanian, N., Wang, M., Wang, W., Watt, K., Weatherall, D.J., Weinstock, M.A., Weintraub, R., Weisskopf, M.G., Weissman, M.M., White, R.A., Whiteford, H., Wiebe, N., Wiersma, S.T., Wilkinson, J.D., Williams, H.C., Williams, S.R., Witt, E., Wolfe, F., Woolf, A.D., Wulf, S., Yeh, P.H., Zaidi, A.K., Zheng, Z.J., Zonies, D., and Lopez, A.D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223.

    Article  PubMed  Google Scholar 

  • Nathan, H., Schulick, R.D., Choti, M.A., and Pawlik, T.M. (2009). Predictors of survival after resection of early hepatocellular carcinoma. Ann Surgery 249, 799–805.

    Article  Google Scholar 

  • Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F.L., Walker, M.G., Watson, D., Park, T., Hiller, W., Fisher, E.R., Wickerham, D.L., Bryant, J., and Wolmark, N. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351, 2817–2826.

    Article  PubMed  CAS  Google Scholar 

  • Palumbo, R., De Marchis, F., Pusterla, T., Conti, A., Alessio, M., and Bianchi, M.E. (2009). Src family kinases are necessary for cell migration induced by extracellular HMGB1. J Leukocyte Biol 86, 617–623.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, M.A., Li, S.L., Sahar, S., Kim, Y.S., Xu, Z.G., Lanting, L., and Natarajan, R. (2006). Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J Biol Chem 281, 13685–13693.

    Article  PubMed  CAS  Google Scholar 

  • Roskams, T. (2006). Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25, 3818–3822.

    Article  PubMed  CAS  Google Scholar 

  • Schiraldi, M., Raucci, A., Muñoz, L.M., Livoti, E., Celona, B., Venereau, E., Apuzzo, T., De Marchis, F., Pedotti, M., Bachi, A., Thelen, M., Varani, L., Mellado, M., Proudfoot, A., Bianchi, M.E., and Uguccioni, M. (2012). HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209, 551–563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman, M. (2008). Recurrence of hepatocellular carcinoma. N Engl J Med 359, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Shigdar, S., Li, Y., Bhattacharya, S., O’Connor, M., Pu, C., Lin, J., Wang, T., Xiang, D., Kong, L., Wei, M.Q., Zhu, Y., Zhou, S., and Duan, W. (2014). Inflammation and cancer stem cells. Cancer Lett 345, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Sia, D., Villanueva, A., Friedman, S.L., and Llovet, J.M. (2017). Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152, 745–761.

    Article  PubMed  CAS  Google Scholar 

  • Sims, G.P., Rowe, D.C., Rietdijk, S.T., Herbst, R., and Coyle, A.J. (2010). HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28, 367–388.

    Article  PubMed  CAS  Google Scholar 

  • Sparvero, L.J., Asafu-Adjei, D., Kang, R., Tang, D., Amin, N., Im, J., Rutledge, R., Lin, B., Amoscato, A.A., Zeh, H.J., and Lotze, M.T. (2009). RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7, 17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108.

    Article  PubMed  Google Scholar 

  • Touré, F., Zahm, J.M., Garnotel, R., Lambert, E., Bonnet, N., Schmidt, A. M., Vitry, F., Chanard, J., Gillery, P., and Rieu, P. (2008). Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem J 416, 255–261.

    Article  PubMed  Google Scholar 

  • Tsung, A., Tohme, S., and Billiar, T.R. (2014). High-mobility group box-1 in sterile inflammation. J Intern Med 276, 425–443.

    Article  PubMed  CAS  Google Scholar 

  • Villanueva, A., Toffanin, S., and Llovet, J.M. (2008). Linking molecular classification of hepatocellular carcinoma and personalized medicine: preliminary steps. Curr Opin Oncol 20, 444–453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashita, T., and Wang, X.W. (2013). Cancer stem cells in the development of liver cancer. J Clin Invest 123, 1911–1918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan, W., Chang, Y., Liang, X., Cardinal, J.S., Huang, H., Thorne, S.H., Monga, S.P.S., Geller, D.A., Lotze, M.T., and Tsung, A. (2012). Highmobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55, 1863–1875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, W., Wang, C., Lin, Y., Liu, Q., Yu, L., Tang, L., Yan, H.X., Fu, J., Chen, Y., Zhang, H.L., Tang, L., Zheng, L.Y., He, Y.Q., Li, Y.Q., Wu, F. Q., Zou, S.S., Li, Z., Wu, M.C., Feng, G.S., and Wang, H.Y. (2012). OV6+ tumor-initiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. J Hepatol 57, 613–620.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W., Yan, H.X., Chen, L., Liu, Q., He, Y.Q., Yu, L.X., Zhang, S.H., Huang, D.D., Tang, L., Kong, X.N., Chen, C., Liu, S.Q., Wu, M.C., and Wang, H.Y. (2008). Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 68, 4287–4295.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81370061, 81521091, 81572896, 81370137, 81722034) and the National Science and Technology Key Projects (2017ZX10203205, 2017ZX10302202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyang Wang or Wen Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Yu, H., Chen, S. et al. Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma. Sci. China Life Sci. 61, 912–923 (2018). https://doi.org/10.1007/s11427-017-9188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9188-x

Keywords

Navigation