Skip to main content
Log in

Laser Thermal Gradient Testing and Fracture Mechanics Study of a Thermal Barrier Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

It is critical for thermal barrier coating (TBC) development that a testing method be used to understand the potential and limitation of a coating’s durability and integrity under gas turbine engine operating conditions. To this end, a TBC-coated button is tested using a laser high-heat flux facility. The ceramic coating is ZrO2-8 wt.% Y2O3 applied via the air plasma spraying process on top of a NiCoCrAlY bond coating and an Inconel alloy 617 substrate button of 25.4 mm diameter. The coated button is subject to precisely controlled laser heating on the top side (1150 °C) and a temperature gradient of 63.9 °C/mm through the button overall thickness. The coated button lasts 160.9 h or 570 cycles of laser heating. The void fraction change before and after the test, the thermal conductivity change during the laser test and the failure assessment are presented. After the test, significant horizontal cracks exist in the top coating close to the thermally grown oxide (TGO) layer and near the button center. Based on the cracks and the TGO layer geometry, the stress intensity factor and strain energy release rate are computed. The combined experimental and computational approach can lead to a TBC lifetime model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

APS:

Air plasma spraying

BC:

Bond coating

C p :

Specific heat

E :

Young’s modulus

FWHM:

Full-width at half-maximum

G :

Strain energy release rate

K :

Stress intensity factor

k n :

Normalized thermal conductivity

k :

Thermal conductivity

SEM:

Scanning electron microscope

SUB:

Substrate superalloy

TBC:

Thermal barrier coatings

TC:

Top coating

TGO:

Thermally grown oxides

T :

Temperature

T H :

Hot side or top side of button temperature

T L :

Cold side or bottom side of button substrate temperature

YSZ:

Yttria stabilized zirconia

α :

Coefficient of thermal expansion

ρ :

Density

v :

Poisson’s ratio

References

  1. V. Viswanathan, G. Dwivedi, and S. Sampath, Multilayer, Multi-materials Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment, J. Am. Ceram. Soc., 2015, 98(6), p 1769-1777

    Article  Google Scholar 

  2. M.J. Smith, J. Scheibel, D. Classen, S. Paschke, S. Elbel, K. Fick, and D. Carlson, Thermal Barrier Coating Validation Testing for Industrial Gas Turbine Combustion Hardware, in ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, June 16-20, 2014 (Dusseldorf, Germany), International Gas Turbine Institute, 2014, GT2014-26359

  3. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: a Review, J. Thermal Spray Technol., 2008, 17(2), p 199-213. https://doi.org/10.1007/s11666-007-9148-y

    Article  Google Scholar 

  4. Inconel Alloy 617, http://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-617.pdf, Accessed on 31 Jan 2019

  5. R.A. Miller, and C.E. Lowell, Failure Mechanisms of Thermal Barrier Coatings Exposed to Elevated Temperatures. Thin Solid Films 95, 265–273 (1982). Also NASA TM-1982-82905

  6. A.H. Bartlett and R.D. Maschio, Failure Mechanisms of a Zirconia-8 wt% Yttria Thermal Barrier Coating, J. Am. Ceram. Soc., 1995, 78, p 1018-1024

    Article  Google Scholar 

  7. N.M. Yanar, The Failure of Thermal Barrier Coatings at Elevated Temperatures, Ph.D. Dissertation, Univ of Pittsburgh, 2004

  8. R. Eriksson, and K.R. Jonnalagadda, A Study on Crack Configurations in Thermal Barrier Coatings, in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, June 26-30, 2017 (Charlotte, USA), International Gas Turbine Institute, 2017, GT2017-63610

  9. J.P. Feist, P.Y. Sollazzo, C. Pilgrim, and J.R. Nicholls, Operation of a Burner Rig for Thermal Gradient Cycling of Thermal Barrier Coatings, in ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, June 16-20, 2014 (Dusseldorf, Germany), International Gas Turbine Institute, 2014, GT2014-26325

  10. A.M. Kanury, Chapter 8 Flames in Premixed Gases, Introduction to Combustion Phenomena, 3rd ed., Gordon & Breach, New York, 1982

    Google Scholar 

  11. M.H. McCay, P.-f. Hsu, D.E. Croy, D. Moreno, and M. Zhang, The Fabrication, High Heat Flux Testing, and Failure Analysis of Thermal Barrier Coatings for Power Generation Gas Turbines, in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, June 26-30, 2017 (Charlotte, USA), International Gas Turbine Institute, 2017, GT2017-63683

  12. D. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions, J. Thermal Spray Technology, 2000, 9(2), p 175-180

    Article  Google Scholar 

  13. D. Zhu, and R.A. Miller, “Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-State Laser Heat-Flux Approach,” NASA TM-2004- 213040 & ARL–TR–3262, Cleveland, Ohio, July 2004

  14. R.S. Lima, B.R. Marple, and P. Marcoux, Thermal Gradient Behavior of TBCs Subjected to a Laser Gradient Test Rig: simulating an Air-to-Air Combat Flight, J. Thermal Spray Technol., 2016, 25(1–2), p 282-290. https://doi.org/10.1007/s11666-015-0311-6

    Article  Google Scholar 

  15. LabVIEW, National Instruments, 11500 N Mopac Expwy, Austin, TX 78759, USA

  16. The Ircon Modline 3, IRCON, Inc., Santa Cruz, CA 95060, USA

  17. J.I. Eldridge and C.M. Spuckler, Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures, J. Am. Ceram. Soc., 2009, 92(10), p 2276-2285

    Article  Google Scholar 

  18. Mikron Model MI-SQ5, LumaSense Technologies, Inc., 3301 Leonard Court, Santa Clara, CA 95054, USA

  19. MATLAB, MathWorks, 1 Apple Hill Drive, Natick, MA 01760, USA

  20. Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coating, E2109-01, ASTM Standards, ASTM, 2014

  21. M.A. Helminiak, N.M. Yanar, F.S. Pettie, T.A. Taylor, and G.H. Meier, The Behavior of High-Purity, Low-Density Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2009, 204, p 793-796

    Article  Google Scholar 

  22. G.C. Chang, W. Phucharoen, and R.A. Miller, Behavior of Thermal Barrier Coatings for Advanced Gas Turbine Blades, Surf. Coat. Technol., 1987, 30(1), p 13-28

    Article  Google Scholar 

  23. C.H. Hsueh and E.R. Fuller, Residual Stresses in Thermal Barrier Coatings: Effect of Interface Asperity Curvature/Height and Oxide Thickness, Mat. Sci. Eng. A, 2000, 283(1–2), p 46-55

    Article  Google Scholar 

  24. C.H. Hsueh and E.R. Fuller, Analytical Modeling of Oxide Thickness Effects on Residual Stresses in Thermal Barrier Coatings, Scripta Mat, 2000, 42(8), p 781-787

    Article  Google Scholar 

  25. M. Gupta, Design of Thermal Barrier Coatings: A Modelling Approach, Springer, Berlin, 2015

    Book  Google Scholar 

  26. J. Aktaa, K. Sfar, and R. Munz, Assessment of TBC Systems Failure Mechanisms using a Fracture Mechanics Approach, Acta Mat., 2006, 53(16), p 4399-4413

    Article  Google Scholar 

  27. M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, and C. Badini, Modeling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch, Engr Fail. Anal., 2006, 13(3), p 409-426

    Article  Google Scholar 

  28. M. Gupta, K. Skogsberg, and P. Nylén, Influence of Topcoat-Bondcoat Interface Roughness on Stresses and Lifetime in Thermal Barrier Coatings, J. Thermal Spray Technol., 2014, 23(1–2), p 170-181. https://doi.org/10.1007/s11666-013-0022-9

    Article  Google Scholar 

  29. M. Gupta, R. Eriksson, U. Sand, and P. Nylén, A Diffusion-Based Oxide Layer Growth Model Using Real Interface Roughness in Thermal Barrier Coatings for Lifetime Assessment, Surf. Coat. Technol., 2015, 271(15), p 181-191

    Article  Google Scholar 

  30. ANSYS, Inc., 2600 ANSYS Drive, Canonsburg, PA 15317, USA

  31. Properties: Alumina-Aluminium Oxide-Al2O3—A Refractory Ceramic Oxide. https://www.azom.com/properties.aspx?ArticleID=52. Accessed 31 Jan 2019

  32. H. Zeng, J. Fang, W. Xu, Z. Zhao, and L. Wang, Thermomechanical Modeling of A Single Splat Solidification in Plasma Spraying, J. Achiev. Mater. Manuf. Eng., 2006, 18(1–2), p 327-330

    Google Scholar 

  33. K. Kim, D. Lee, and H. Cho, Lifetime Prediction of Film Cooling Systems with and without Thermal Barrier Coating, Int. J. Fluid Mach. Syst., 2010, 3(2), p 204-210

    Article  Google Scholar 

  34. Zirconia—Stabilized with Yttria—Online Catalogue Source—Supplier of Research Materials in Small Quantities—Goodfellow. http://www.goodfellow.com/E/Zirconia-stabilised-with-Yttria.html. Accessed 31 Jan 2019

  35. G.M. Smith, M. Resnick, B. Kjellman, J. Wigren, G. Dwivedi, and S. Sampath, Orientation-dependent mechanical and thermal properties of plasma-sprayed ceramics, J. Am. Ceram. Soc., 2018, 101, p 2471-2481

    Article  Google Scholar 

  36. S.R. Choi, D. Zhu, and R.A. Miller, Effect of Sintering on Mechanical and Physical Properties of Plasma-Sprayed Thermal Barrier Coatings, NASA TM-2004-212625, April 2004

  37. R. Vaßen, S. Giesen, and D. Stover, Lifetime of Plasma Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Thermal Spray Tech., 2009, 18(5–6), p 835-845

    Article  Google Scholar 

  38. Y.S. Wu, P.-f. Hsu, Y. Wang, and M.H. McCay, Finite Element Analysis of Cracks in the Thermal Barrier Coatings, 2019, under preparation.

Download references

Acknowledgments

The authors wish to acknowledge the support of laser high-heat flux testing by Shanghai Electric Gas Turbine Co. Ltd. The support of the numerical study is provided by Florida Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-feng Hsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Hsu, Pf., Wang, Y. et al. Laser Thermal Gradient Testing and Fracture Mechanics Study of a Thermal Barrier Coating. J Therm Spray Tech 28, 1239–1251 (2019). https://doi.org/10.1007/s11666-019-00879-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00879-9

Keywords

Navigation