Skip to main content
Log in

Assessment and Evaluation of Mobilities for Diffusion in the bcc Cr-V-Fe System

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Assessments of diffusion mobility parameters are performed for the bcc Cr-V-Fe alloy system by taking available literature data into account. The main focus is on the diffusion of V in the bcc phase where, in addition to all binaries, ternary interaction parameters are assessed. An experiment is performed in order to study the coarsening of V-rich MC carbide, where the diffusion of V is believed to be of major importance. The measured coarsening rate is compared with the rate calculated using DICTRA, and found to be in satisfactory agreement. The aspects of coarsening experiments as a method to evaluate diffusion mobility data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Borgenstam, A. Engström, L. Höglund and J. Ågren, DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilibria Diffusion, 2000, 21(3), p 269-280.

    Google Scholar 

  2. J. Bratberg, Investigation and Modification of Carbide Sub-Systems in Multicomponent Fe-C-Co-Cr-Mi-Si-V-W System, Z. Metallkd., 2005, 96(4), p 335-344.

    Google Scholar 

  3. B. Jönsson, Mobilities in Multicomponent Alloys and Simulation of Diffusional Phase Transformations, Computer Assisted Materials Design (COMMP-93), Sept 6-9, 1993 (Tokyo), p 320-325

  4. C. E. Campbell, W. J. Boettinger and U. R. Kattner, Development of a Diffusion Mobility Database for Ni-Base Superalloys, Acta Materialia, 2002, 50(4) p 775-792.

    Article  Google Scholar 

  5. Y. W. Cui, M. Jiang, I. Ohnuma, K. Oikawa, R. Kainuma and K. Ishida, Computational Study of Atomic Mobility for fcc Phase of Co-Fe and Co-Ni Binaries, J. Phase. Equilib., 2008, 29(29), p 2-10.

    Google Scholar 

  6. J.O. Andersson and J. Ågren, Models for Numerical Treatments of Multicomponent Diffusion in Simple Phases, J. Appl. Phys.,, 72(4), 1992, p 1350-1355.

    Article  ADS  Google Scholar 

  7. B. Jönsson, Assessment of the Mobility of Carbon in fcc C-Cr-Fe-Ni Alloys, Z. Metallkd., 1994, 85(7), p 502-509.

    Google Scholar 

  8. J. Fridberg, L.-E. Törndahl and M. Hillert, Diffusion in Iron, Jernkont. Ann., 1985, 153, p 263-276.

    Google Scholar 

  9. A.E. Lord and D. N. Beshers, Acta Metall., The Mechanical Damping of Iron from Room Temperature to 400 C at 400 megacycles/sec, 1966, 14(12), p 1659-1672.

    Article  Google Scholar 

  10. B. Jönsson, On Ferromagnetic Ordering and Lattice Diffusion: A Simple Model, Z. Metallkd., 1992, 83(5), p 349-355.

    Google Scholar 

  11. B. Jönsson, Ferromagnetic Ordering and Diffusion of Carbon and Nitrogen in bcc Cr-Fe-Ni Alloys, Z. Metallkd., 1994, 85(7), p 498-501.

    Google Scholar 

  12. I. M. Lifshitz and V. V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, 1961, 19, p 35-50.

    Article  ADS  Google Scholar 

  13. C. Wagner, Theorie der Alterung von Niederschlugen durch Umlosen, Z. Electrochem., 1961, 65, p 581-591, in German.

    Google Scholar 

  14. R.F. Peart, J. Phys. Chem. Solids, Diffusion of V48 and Fe59 in Vanadium, 1965, 26(12), p 1853-1861.

    Article  ADS  Google Scholar 

  15. J. Pelleg, Self Diffusion in Vanadium Single Crystals, Philos. Mag., 1974, 29(2), p 383-393.

    Article  ADS  Google Scholar 

  16. M. P. Macht, G. Frohberg and H. Wever, Selbstdiffusion in Vanadium (Self Diffusion in Vanadium), Z. Metallkd, 1979, 70(4), p 209-214, in German.

    Google Scholar 

  17. D. Ablitzer, J. P. Haeussler and K. V. Sahyarai, Vanadium Self-Diffusion in Pure Vanadium and in Dilute Vanadium-Tantalum Alloys, Philos. Mag. A, 1983, 47(4), p 515-528.

    Article  ADS  Google Scholar 

  18. B. Günther, O. Kanert and D. Wolf, Nuclear Magnetic Resonance Study of Self-Diffusion in Solid Selenium, Solid State Commun., 1983, 47(5), p 409-413.

    Article  Google Scholar 

  19. T. S. Lundy and C. J. McHargue, Diffusion of V48 in Vanadium, Trans. Met. Soc. AIME, 1965, 233, p 243-244.

    Google Scholar 

  20. J. Geise and C. Herzig, Impurity Diffusion of Vanadium and Self-Diffusion in Iron, Z. Metallkd., 1987, 78(4), p 291-294.

    Google Scholar 

  21. M. G. Coleman, C. A. Wert and R. F. Peart, Isotope Effect for Diffusion of Iron in Vanadium, Phys. Rev., 1968, 175(3), p 788-795.

    Article  ADS  Google Scholar 

  22. G. Neumann and V. Tölle, Impurity Diffusion in Body-Centred Cubic Metals: Analysis of Experimental Data, Z. Metallkd., 1991, 82(10), p 741-744.

    Google Scholar 

  23. D. Ablitzer, J. Haeussler, K. Sathyraj and A. Vignes, Diffusion of Iron in Vanadium, Philos. Mag. A, 1981, 44(3), p 589-600.

    Article  ADS  Google Scholar 

  24. R.E. Hanneman, R. E. Ogilvie and H. C. Gatos, Effect of High Pressure on the Fe-V System Part II: Chemical Interdiffusion, Trans. Metall. Soc. AIME, 1965, 233, p 691-697.

    Google Scholar 

  25. D.A.F. Lai and R.J. Borg, Diffusion of Iron in Various Ferrous Alloys, US A.E.C., Report: UCRL-50314, 1967

  26. A. W. Bowen and G. M. Leak, Diffusion in bcc Iron Base Alloys, Met. Trans., 1970, 1, p 2767-2773.

    Article  Google Scholar 

  27. K. Obrtlík and J. Kucera, Diffusion of Vanadium in the Fe-V System, Phys. Stat. Sol. (a), 1979, 53, p 589-597.

    Article  ADS  Google Scholar 

  28. A. Wolfe and H. W. Paxton, Diffusion in Bcc Metals, Trans. Met. Soc. AIME, 1964, 230, p 1426-1432.

    Google Scholar 

  29. [30] J. N. Mundy, C. W. Tse and W. D. McFall, Isotope Effect in Chromium Self-Diffusion, Phys. Rev., 1976, 13(6), p 2349-2357.

    Article  ADS  Google Scholar 

  30. J. Kucera, B. Million and K Ciha, Diffusion of Molybdenum, Tungsten and Vanadium in Fe-Cr Alloys with a bcc Lattice, Kov. mat., 1968, 7, p 97-107 in Czech.

    Google Scholar 

  31. [32] J. Cermak, J. Ruzickova and A. Pokorna, Tracer Diffusion of Vanadium in Fe-Cr Ferritic Alloys, Scr. Metall. Mater, 1995, 33(7), p 1069-1073.

    Article  Google Scholar 

  32. [33] J. Bratberg, J. Ågren and K. Frisk, Diffusion Simulations of MC and M7C3 Carbide Coarsening in bcc and fcc Matrix Utilising a New Thermodynamic and Kinetic Description, Mater. Sci. Technol., 2008, 24(6), p 695-704.

    Article  Google Scholar 

  33. M. Y. Wey, T. Sakuma and T. Nishizawa, Growth of Alloy Carbide Particles in Austenite, Trans. Jpn. Inst. Met., 1981, 22(10), p 733-742.

    Google Scholar 

  34. C. Zener, referenced by C.S. Smith, Grains, Phases, Interfaces; An Interpretation of Microstructure, Trans. AIME, 1948, 175, p 15-51

    Google Scholar 

Download references

Acknowledgments

This work was financed by Böhler Edelstahl, Uddeholm Tooling AB and Böhler-Uddeholm AG. Thanks are dedicated to the research committee; Devrim Caliskanoglu, Ingo Siller and Odd Sandberg, for their interest and support. For the experimental help we wish to thank the colleagues at Swerea KIMAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta Lindwall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindwall, G., Frisk, K. Assessment and Evaluation of Mobilities for Diffusion in the bcc Cr-V-Fe System. J. Phase Equilib. Diffus. 30, 323–333 (2009). https://doi.org/10.1007/s11669-009-9531-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-009-9531-0

Keywords

Navigation