Skip to main content
Log in

Heterogeneous catalytic solvent-free synthesis of 3,3,5-trimethyl cyclohexyl anthranilic acid esters via transesterification

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The transesterification of anthranilates with both mixtures of cis and trans and pure trans 3,3,5-trimethyl cyclohexanol was studied using ‘calcium-oxide- and magnesium-oxide’-based catalysts under ‘solvent-free’ conditions. The catalysts were characterized by XRD, CO2-TPD, BET-surface area, and FEG–SEM analysis. Pure calcium oxide was found to be the most effective heterogeneous catalyst. Pure ‘calcium-oxide’-based catalyst was recycled five times without appreciable loss in the catalytic activity. The TOF after five recycles was 10.7 mol/mol of catalyst/h. The study was further extended for the synthesis of new anthranilates. The synthesized pure esters have been characterized by UV–Vis, IR-, 1H NMR-, and 13C NMR spectroscopies and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abreu FR, Alves MB, Macêdo CCS, Zara LF, Suarez PAZ (2005) New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reaction. J Mol Catal A Chem 227:263–267. doi:10.1016/j.molcata.2004.11.001

    Article  CAS  Google Scholar 

  • Billman JH, Smith WT Jr, Rendall JL (1947) Anticonvulsants. Esters of γ-diethylamino-α-phenylbutyric acid. J Am Chem Soc 69:2058. doi:10.1021/ja01200a070

    Article  CAS  Google Scholar 

  • Blandy C, Gervais D, Pellegatta JL, Gillot B, Guiraud R (1991) Stearic acid esterification catalysed by titanates: comparative study of homogeneous and heterogeneous systems. J Mol Catal 64:L1–L6. doi:10.1016/0304-5102(91)85117-K

    Article  CAS  Google Scholar 

  • Boeya P-L, Maniama GP, Hamid SA (2011) Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: a review. Chem Eng J 168:15–22. doi:10.1016/j.cej.2011.01.009

    Article  Google Scholar 

  • Brenner M, Huber W (1953) Preparation of α-amino acid esters by alcoholysis of the methyl ester. Helv Chim Acta 36:1109. doi:10.1002/hlca.19530360522

    Article  CAS  Google Scholar 

  • Dan C, Popovici E-J, Ungur L, Pascu L, Ciocan C, Grecu R (2001) Spectroscopical characterisation of precursors for calcium hydroxide synthesis. Stud Univ Abeş-Bolyai Phys (Special issue):417–422

  • Frank RL, Davis HR Jr, Drake S, McPherson JB Jr (1944) Ester Interchange by Means of the Grignard Complex. J Am Chem Soc 66:1509. doi:10.1021/ja01237a027

    Article  CAS  Google Scholar 

  • Galmarini S, Aimable A, Ruffray N, Bowen P (2011) Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment. Cem Concr Res 41:1330–1338. doi:10.1016/j.cemconres.2014.03.009

    Article  CAS  Google Scholar 

  • Gambaro R, Villa C, Baldassari S, Mariani E, Parodi A, Bassi AM (2006) 3,3,5-Trimethylcyclohexanols and derived esters: green synthetic procedures, odour evaluation and in vitro skin cytotoxicity assays. Int J Cosmet Sci 28:439–446. doi:10.1111/j.1467-2494.2006.00343.x

    Article  CAS  Google Scholar 

  • Haken JK (1966) Studies in trans-esterification. J Appl Chem 16:89. doi:10.1002/jctb.5010160304

    Article  CAS  Google Scholar 

  • Hameed BH, Lai LF, Chin LH (2009) Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: an optimized process. Fuel Process Technol 90:606–610. doi:10.1021/ef8007954

    Article  CAS  Google Scholar 

  • He M, Xiao B, Liu S, Hu Z, Guo X, Luo S, Yang F (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrolysis 87(2):181–187. doi:10.1016/j.jaap.2009.11.005

    Article  CAS  Google Scholar 

  • Imwinkelried R, Schiess M, Seebach D (1987) Org Synth 65:230. doi:10.15227/orgsyn.065.0230

  • Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P (2006) Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem Eng J 116:61–66. doi:10.1016/j.cej.2005.09.025

    Article  CAS  Google Scholar 

  • Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY (2004) Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today 93–95:315–320. doi:10.1016/j.cattod.2004.06.007

    Article  Google Scholar 

  • Kontoyannis CG, Vagenas NV (2000) Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125:251–255. doi:10.1039/A908609I

    Article  CAS  Google Scholar 

  • Kouzu M, Hidaka J-S (2012) Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel. 93:1–12. doi:10.1016/j.fuel.2011.09.015

    Article  CAS  Google Scholar 

  • Leclercq E, Finiels A, Moreau C (2001) Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. J Am Oil Chem Soc 78:1161–1165. doi:10.1007/s11746-001-0406-9

    Article  CAS  Google Scholar 

  • Otera J, Yano T, Atsuya K, Nozaki H (1986) Novel distannoxane-catalyzed transesterification and a new entry to α,β-unsaturated carboxylic acids. Tetrahedron Lett 27:2383. doi:10.1016/S0040-4039(00)84535-9

    Article  CAS  Google Scholar 

  • Rehberg CE, Fisher CH (1947) Preparation and polymerization of acrylic esters of olefinic alcohols. J Org Chem 12:226. doi:10.1021/jo01166a004

    Article  CAS  Google Scholar 

  • Rossi RA, de Rossi RH (1974) Preparation of benzoate esters of tertiary alcohols by transesterification. J Org Chem 39:855. doi:10.1021/jo00920a030

    Article  CAS  Google Scholar 

  • Seebach D, Hungerbühler E, Naef R, Schnurrenberger P, Weidmann B, Züger M (1982) Titanate-mediated transesterifications with functionalized substrates. Synthesis 138. doi:10.1055/s-1982-29718

  • Sercheli R, Vargas RM, Sheldon RA, Schuchardt U (1999) Guanidines encapsulated in zeolite Y and anchored to MCM-41: synthesis and catalytic activity. J Mol Catal A Chem 148:173–181. doi:10.1016/S1381-1169(99)00054-0

    Article  CAS  Google Scholar 

  • Taft RW Jr, Newman MS, Verhoek FH (1950) The Kinetics of the Base-catalyzed Methanolysis of Ortho, Meta and Para Substituted l-Menthyl Benzoates. J Am Chem Soc 72:4511. doi:10.1021/ja01166a048

    Article  CAS  Google Scholar 

  • Verziu M, Florea M, Simon S, Simon V, Filip P, Parvulescu VI, Hardacre C (2009) Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides—evidences of the nature of the active site and catalytic performances. J Catal 263:56–66. doi:10.1016/j.jcat.2009.01.012

    Article  CAS  Google Scholar 

  • Watcharathamrongkul K, Jongsomjit B, Phisalaphong M (2010) Calcium oxide based catalysts for ethanolysis of soybean oil Songklanakarin. J Sci Technol 32(6):627–634

    CAS  Google Scholar 

  • Wulfman DS, McGiboney B, Peace BW (1972) Preparation and use of t-butyl esters: selective transesterification. Synthesis 49. doi:10.1055/s-1972-21832

  • Xie W, Peng H, Chen L (2006) Transesterification of soybean oil catalyzed by Potassium loaded on alumina as a solid-base catalyst. Appl Catal A Gen 300:67–74. doi:10.1016/j.apcata.2005.10.048

    Article  CAS  Google Scholar 

  • Zhang S, Zu YG, Fu YJ, Luo M, Zhang DY, Efferth T (2010) Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour Technol 101:931–936. doi:10.1016/j.biortech.2009.08.069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Indian Institute of technology, Mumbai, for the support provided for the FT-IR, 13C NMR, 1H NMR, TPD, Mass, Elemental, and Image analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manapragada V. Rathnam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3017 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thatte, C.S., Rathnam, M.V., Namdeo, A. et al. Heterogeneous catalytic solvent-free synthesis of 3,3,5-trimethyl cyclohexyl anthranilic acid esters via transesterification. Chem. Pap. 71, 981–990 (2017). https://doi.org/10.1007/s11696-016-0061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0061-z

Keywords

Navigation