Skip to main content
Log in

Hansch’s analysis application to chalcone synthesis by Claisen–Schmidt reaction based in DFT methodology

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Chalcones are bioactive compounds obtained from either natural sources or synthetic procedures and widely used due to their several biological properties. The most common experimental methodology in obtaining these compounds is Claisen–Schmidt reaction, which is a particular type of aldolic condensation. In this work, we have synthesized 23 chalcones and by density functional theory (DFT) calculation, we have studied the difference in reactivity of the several benzaldehydes and their effects on the yield of this reaction. From molecular orbital descriptors were obtained two quantitative structure–reactivity relationship (QSRR) models based on Hansch’s analysis. The results of this study showed that, for the most benzaldehydes (15 of 23 compounds), their reactivity was correlated with LUMO energy and global Electrophilicity Index (ω) values, which are determined in the first step of Claisen–Schmidt condensation mechanism (nucleophilic addition). Likewise, for the smallest group of benzaldehydes, their reactivity was related to their HOMO and ΔL − H (LUMO − HOMO) energies, which were determined in the second step of the mechanism (trans-elimination). This is the first report of a QSRR model analyzing the yield of chalcone synthesis based on DFT methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1

Similar content being viewed by others

References

  • Akansksha AK (2007) Zirconium chloride catalyzed efficient synthesis of 1,3-diaryl-2-propenones in solvent free conditions via aldol condensation. J Mol Catal A Chem 274:212–216. doi:10.1016/j.molcata.2007.05.016

    Article  Google Scholar 

  • Alegaon SG, Alagawadi KR, Vinod D, Unger B, Khatib NA (2014) Synthesis, pharmacophore modeling, and cytotoxic activity of 2-thioxothiazolidin-4-one derivatives. Med Chem Res 23:5160–5173. doi:10.1007/s00044-014-1087-9

    Article  CAS  Google Scholar 

  • Anto RJ, Kutaan G, Kuttan R, Sathyanarayana K, Rao MNA (1994) Tumor-reducing and antioxidant activities of sydnone-substituted chalcones. J Clin Biochem Nutr 17:73–80. doi:10.3164/jcbn.17.73

    Article  CAS  Google Scholar 

  • Bhagat S, Sharma R, Sawant D, Sharma L, Chakraborti A (2006) LiOH· H2O as a novel dual activation catalyst for highly efficient and easy synthesis of 1, 3-diaryl-2-propenones by Claisen–Schmidt condensation under mild conditions. J Mol Catal A Chem 244:20–24. doi:10.1016/j.molcata.2005.08.039

    Article  CAS  Google Scholar 

  • Carloni P, Alber F, Mannhold R, Kubinyi H, Folkers G (2006) Quantum medicinal chemistry, vol 17. Wiley-VCH, Alemania

    Google Scholar 

  • Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comp Chem 20:129–154. doi:10.1002/(Sici)1096-987x(19990115)20:1<129:Aid-Jcc13>3.0.Co;2-A

    Article  CAS  Google Scholar 

  • De Vleeschouwer F, Van Speybroeck V, Waroquier M, Geerlings P, De Proft F (2007) Electrophilicity and nucleophilicity index for radicals. Org Lett 9:2721–2724. doi:10.1021/ol071038k

    Article  Google Scholar 

  • Duchowicz PR, Castro EA (2009) QSPR studies on aqueous solubilities of drug-like compounds. Int J Mol Sci 10:2558–2577. doi:10.3390/ijms10062558

    Article  CAS  Google Scholar 

  • Ege S (2000) Reacciones Concertadas Química Orgánica Estructura y Reactividad, vol TOMO 1. Editorial Revertè, España, pp 1297–1356

    Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford

    Google Scholar 

  • Golbraikh A, Alexander T (2002) Beware of q2! J Mol Graph Model 20:269. doi:10.1016/S1093-3263(01)00123-1

    Article  CAS  Google Scholar 

  • Jeon JH, Kim SJ, Kim CG, Kim JK, Jun JG (2012) Synthesis of biologically active chalcones and their anti-inflammatory effects. Bull Korean Chem Soc 33:953–957. doi:10.5012/bkcs.2012.33.3.953

    Article  CAS  Google Scholar 

  • Kamal A, Prabhakar S, Janaki Ramaiah M, Venkat Reddy P, Ratna Reddy C, Mallareddy A, Shankaraiah N, Lakshmi Narayan Reddy T, Pushpavalli SN, Pal-Bhadra M (2011) Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur J Med Chem 46:3820–3831. doi:10.1016/j.ejmech.2011.05.050

    Article  CAS  Google Scholar 

  • Karelson M, Lobanov VS (1996) Quantum-chemical descriptor in QSAR/QSPR studies. Chem Rev 96:1027–1043. doi:10.1021/cr950202r

    Article  CAS  Google Scholar 

  • Li W, Xu K, Xu L, Hu J, Ma F, Guo Y (2010) Preparation of highly ordered mesoporous AlSBA-15–SO3H hybrid material for the catalytic synthesis of chalcone under solvent-free condition. Appl Surf Sci 256:3183–3190

    Article  CAS  Google Scholar 

  • Liu Z, Lee W, Kim SN, Yoon G, Cheon SH (2011) Design, synthesis, and evaluation of bromo-retrochalcone derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 21:3755–3758. doi:10.1016/j.bmcl.2011.04.057

    Article  CAS  Google Scholar 

  • Lopez JM, Ensuncho AE, Robles JR (2013) Global and local reactivity descriptors for the design of new anticancer drugs based on cis-platinum(II). Quim Nova 36:1308–1317. doi:10.1590/S0100-40422013000900006

    Article  CAS  Google Scholar 

  • Luo Y, Song R, Li Y, Zhang S, Liu ZJ, Fu J, Zhu HL (2012) Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorg Med Chem Lett 22:3039–3043. doi:10.1016/j.bmcl.2012.03.080

    Article  CAS  Google Scholar 

  • Moens J, Geerlings P, Roos G (2007) A conceptual DFT approach for the evaluation and interpretation of redox potentials. Chem Eur J 13:8174–8184. doi:10.1002/chem.200601896

    Article  CAS  Google Scholar 

  • Narender T, Reddy KP (2007) A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett 48:3177–3180. doi:10.1016/j.tetlet.2007.03.054

    Article  CAS  Google Scholar 

  • Narender T, Venkateswarlu K, Nayak BV, Sakar S (2011) A new chemical access for 3′-acetyl-4′-hydroxychalcones using borontrifluoride–etherate via a regioselective Claisen–Schmidt condensation and its application in the synthesis of chalcone hybrids. Tetrahedron Lett 52:5794–5798. doi:10.1016/j.tetlet.2011.08.120

    Article  CAS  Google Scholar 

  • Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. doi:10.1021/Ja983494x

    Article  CAS  Google Scholar 

  • Patil AB, Bhanage BM (2013) Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation. Catal Commun 36:79–83. doi:10.1016/j.catcom.2013.03.012

    Article  CAS  Google Scholar 

  • Pearson RG (1993) The principle of maximum hardness. Acc Chem Res 26:250–255. doi:10.1021/Ar00029a004

    Article  CAS  Google Scholar 

  • Petrov O, Ivanova Y, Gerova M (2008) SOCl2/EtOH: catalytic system for synthesis of chalcones. Catal Commun 9:315–316. doi:10.1016/j.catcom.2007.06.013

    Article  CAS  Google Scholar 

  • Pilatova M, Varinska L, Perjesi P, Sarissky M, Mirossay L, Solar P, Ostro A, Mojzis J (2010) In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol In Vitro 24:1347–1355. doi:10.1016/j.tiv.2010.04.013

    Article  CAS  Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, Seventh edn. Wiley, USA

    Google Scholar 

  • Sivakumar PM, Prabhakar PK, Doble M (2001) Synthesis, antioxidant evaluation, and quantitative structure–activity relationship studies of chalcones. Med Chem Res 20:482–492. doi:10.1007/s00044-010-9342-1

    Article  Google Scholar 

  • Sugamoto K, Matsusita YI, Matsui K, Kurogi C, Matsui T (2011) Synthesis and antibacterial activity of chalcones bearing prenyl or geranyl groups from Angelica keiskei. Tetrahedron 67:5346–5359. doi:10.1016/j.tet.2011.04.104

    Article  CAS  Google Scholar 

  • Yee LC, Wei YC (2012) Statistical modelling of molecular descriptors in QSAR/QSPR. In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modelling of molecular descriptors in QSAR/QSPR, vol 2. Wiley, Weinheim

    Google Scholar 

  • Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810. doi:10.1021/acs.chemrev.7b00020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Dirección de Investigación y Postgrado (DGIP) of Universidad Técnica Federico Santa María; scientific initiation project 2015 (PIIC-MM), CONICYT Programa Formación de Capital Humano Avanzado 21130456; Proyecto VRIEA-PUCV “37.0/2017” and Dr. Guillermo Díaz Felming of Laboratorio de Espectroscopia Atómica y Molecular of Universidad de Playa Ancha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Mellado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellado, M., Madrid, A., Martínez, Ú. et al. Hansch’s analysis application to chalcone synthesis by Claisen–Schmidt reaction based in DFT methodology. Chem. Pap. 72, 703–709 (2018). https://doi.org/10.1007/s11696-017-0316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0316-3

Keywords

Navigation