Skip to main content
Log in

Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)–BiFeO3 composite films

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

A novel two-phase composite film is prepared by the solvent casting method employing poly(methyl methacrylate) (PMMA) as polymer matrix and bismuth ferrite (BFO) as ceramic filler. The surfaces of BFO are functionalized by proper hydroxylating agents to activate their chemical nature. The structural analysis of the composite films confirms that the composites made up of functionalized BFO (BFO-OH) have a distorted rhombohedral structure. The morphological analysis shows that BFO-OH particles are equally distributed over the polymer matrix. The -OH functionality of BFO-OH is confirmed by FTIR. The dielectric and electrical studies at a frequency range from 100 Hz to 1 MHz reveal that PMMA-(BFO-OH) composites have enhanced dielectric constant as well as electrical conductivities, much higher than that of unmodified composites. According to the ferroelectric measurement result, the hydroxylated composite film shows a superior ferroelectric behavior than that of the unmodified one, with a remanent polarization (2Pr) of 2.764 μC/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan J K, Li W L, Yao S H, et al. High dielectric permittivity and low percolation threshold in polymer composites based on SiCcarbon nanotubes micro/nano hybrid. Applied Physics Letters, 2011, 98(3): 032901

    Article  Google Scholar 

  2. Vishnuvardhan T K, Kulkarni V R, Basavaraja C, et al. Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bulletin of Materials Science, 2006, 29(1): 77–83

    Article  Google Scholar 

  3. Sava F, Cristescu R, Socol G, et al. Structure of bulk and thin films of poly(methyl methacrilate (PMMA) polymer prepared by pulsed laser deposition. Journal of Optoelectronics and Advanced Materials, 2002, 4(4): 965–970

    Google Scholar 

  4. Grossiord N, Loos J, Koning C E, et al. Strategies for dispersing carbon nanotubes in highly viscous polymers. Journal of Materials Chemistry, 2005, 15(24): 2349–2352

    Article  Google Scholar 

  5. Arbatti M, Shan X, Cheng Z Y, et al. Ceramic–polymer composites with high dielectric constant. Advanced Materials, 2007, 19(10): 1369–1372

    Article  Google Scholar 

  6. Stefanescu E A, Tan X, Lin Z, et al. Multifunctional PMMA–ceramic composites as structural dielectrics. Polymer, 2010, 51(24): 5823–5832

    Article  Google Scholar 

  7. Wang H, Xiang F, Li K, et al. Ceramic–polymer Ba0.6Sr0.4TiO3/ poly(methyl methacrylate) composites with different type composite structures for electronic technology. Applied Ceramic Technology, 2010, 7(4): 435–443

    Google Scholar 

  8. Khattari Z, Maghrabi M, McNally T, et al. Impedance study of polymethyl methacrylate composites/multi-walled carbon nanotubes (PMMA/MWCNTs). Physica B: Condensed Matter, 2012, 407(4): 759–764

    Article  Google Scholar 

  9. Jung S, Baeg K, Yoon S, et al. Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene fluoride-trifluoroethylene)/poly(methyl methacrylate) dielectrics. Journal of Applied Physics, 2010, 108(10): 102810

    Article  Google Scholar 

  10. Ahlawat A, Satapathy S, Bhartiya S, et al. BiFeO3/poly(methyl methacrylate) nanocomposite films: A study on magnetic and dielectric properties. Applied Physics Letters, 2014, 104(4): 042902 (3 pages)

    Article  Google Scholar 

  11. Fiebig M, Lottermoser T, Fröhlich D, et al. Observation of coupled magnetic and electric domains. Nature, 2002, 419(6909): 818–820

    Article  Google Scholar 

  12. Loh K J, Chang D. Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. Journal of Materials Science, 2011, 46(1): 228–237

    Article  Google Scholar 

  13. Setvín M, Daniel B, Mansfeldova V, et al. Surface preparation of TiO2 anatase (101): Pitfalls and how to avoid them. Surface Science, 2014, 626: 61–67

    Article  Google Scholar 

  14. Beier C W, Cuevas M A, Brutchey R L. Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. Langmuir, 2010, 26(7): 5067–5071

    Article  Google Scholar 

  15. Kim P, Jones S C, Hotchkiss P J, et al. Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Advanced Materials, 2007, 19(7): 1001–1005

    Article  Google Scholar 

  16. Song Y, Shen Y, Liu H Y, et al. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. Journal of Materials Chemistry, 2012, 22(32): 16491–16498

    Article  Google Scholar 

  17. Chon J, Ye S, Cha K J, et al. High-dielectric sol–gel hybrid materials containing barium titanate nanoparticles. Chemistry of Materials, 2010, 22(19): 5445–5452

    Article  Google Scholar 

  18. Li J, Claude J, Norena-Franco L E, et al. Electrical energy storage in ferroelectric polymer nanocomposites containing surfacefunctionalized BaTiO3 nanoparticles. Chemistry of Materials, 2008, 20(20): 6304–6306

    Article  Google Scholar 

  19. Chu L W, Prakash K N, Tsai M T, et al. Dispersion of nano-sized BaTiO3 powders in nonaqueous suspension with phosphate ester and their applications for MLCC. Journal of the European Ceramic Society, 2008, 28(6): 1205–1212

    Article  Google Scholar 

  20. Sharma S, Tomar M, Kumar A, et al. Multiferroic properties of BiFeO3/BaTiO3 multilayered thin films. Physica B: Condensed Matter, 2014, 448: 125–127

    Article  Google Scholar 

  21. Lee M H, Lee S C, Sung Y S, et al. Improvement of ferroelectric and leakage current properties with Zn–Mn co-doping in BiFeO3 thin films. Ferroelectrics, 2010, 401(1): 186–191

    Article  Google Scholar 

  22. Godara S, Sinha N, Ray G, et al. Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. Journal of Asian Ceramic Societies, 2014, 2(4): 416–421

    Article  Google Scholar 

  23. Xie L, Huang X, Huang Y, et al. Core@double-shell structured BaTiO3–polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. The Journal of Physical Chemistry C, 2013, 117(44): 22525–22537

    Article  Google Scholar 

  24. Paniagua S A, Kim Y, Henry K, et al. Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Applied Materials & Interfaces, 2014, 6(5): 3477–3482

    Article  Google Scholar 

  25. Bajpai O P, Kamdi J B, Selvakumar M, et al. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto–dielectric properties of polyvinylacetate/BiFeO3 nanocomposites. Express Polymer Letters, 2014, 8(9): 669–681

    Article  Google Scholar 

  26. Ray D K, Himanshu A K, Sinha T P, et al. Structural and low frequency dielectric studies of conducting polymer nanocomposites. Indian Journal of Pure and Applied Physics, 2007, 45: 692–699

    Google Scholar 

  27. Tripathi S K, Gupta A, Kumari M, et al. Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bulletin of Materials Science, 2012, 35(6): 969–975

    Article  Google Scholar 

  28. Zhao R, Zhao J, Wang L, et al. Reduced sedimentation of barium titanate nanoparticles in poly(vinylidene fluoride) films during solution casting by surface modification. Journal of Applied Polymer Science, 2015, 132(42): 42662

    Article  Google Scholar 

  29. Prakash B S, Varma K B R. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Composites Science and Technology, 2007, 67(11–12): 2363–2368

    Article  Google Scholar 

  30. Sengwa R J, Choundhary S, Sankhla S. Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Composites Science and Technology, 2010, 70(11): 1621–1627

    Article  Google Scholar 

  31. Catalan G, Scott J F. Physics and applications of bismuth ferrite. Advanced Materials, 2009, 21(24): 2463–2485

    Article  Google Scholar 

  32. Luther G. Dielectric dispersion of ferroelectric triglycine sulphate in the microwave region. Physica Status Solidi A: Applied Research, 1973, 20(1): 227–236

    Article  Google Scholar 

  33. Thakur V K, Tan E J, Lin M F, et al. Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. Journal of Materials Chemistry, 2011, 21(11): 3751–3759

    Article  Google Scholar 

  34. Jayalakshmi M, Balasubramanian K. Simple capacitors to supercapacitors - an overview. International Journal of Electrochemical Science, 2008, 3: 1196–1217

    Google Scholar 

  35. Rajalakshmi R, Kambhala N, Angappane S, et al. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer. Materials Science and Engineering B, 2012, 177(11): 908–912

    Article  Google Scholar 

  36. Ramesh S, Liew C W, Arof A K. Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3- methylimidazolium hexafluorophosphate. Journal of Non-Crystalline Solids, 2011, 357(21): 3654–3660

    Article  Google Scholar 

  37. Park J H, Hwang D K, Lee J, et al. Studies on poly(methyl methacrylate) dielectric layer for field effect transistor: Influence of polymer tacticity. Thin Solid Films, 2007, 515(7–8): 4041–4044

    Article  Google Scholar 

  38. Gravatt C C, Gross P M. Effect of hydrogen bonding on the electrical conductivity of organic solids. Journal of Chemical Physics, 1967, 46(2): 413

    Article  Google Scholar 

  39. Singh V R, Dixit A, Garg A, et al. Effect of heat treatment on the structure and properties of chemical solution processed multiferroic BiFeO3 thin films. Applied Physics A: Materials Science & Processing, 2008, 90(1): 197–202

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere thanks to Sambalpur University for providing the facilities for research works. We are also thankful to NIT Raipur for providing the facilities of XRD & SEM study and University Grant Commissions (UGC) (F. No: 42-277/2013) (SR), New Delhi, Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Naresh Mahaling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M.K., Moharana, S., Behera, B. et al. Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)–BiFeO3 composite films. Front. Mater. Sci. 11, 82–91 (2017). https://doi.org/10.1007/s11706-017-0364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-017-0364-1

Keywords

Navigation