Skip to main content
Log in

Design of broadband polarization converter for terahertz waves

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A broadband reflective polarization converter is proposed. The unit cell of polarization converter is composed of a single-split resonant ring, a double-split resonant ring, a dielectric substrate and a metallic ground. The simulated results show that the polarization converter can convert x-polarized waves into y-polarized waves and obtain a broadband polarization conversion from 0.501 0 THz to 1.390 0 THz with the polarization conversion ratio (PCR) beyond 80% at normal incidence. Moreover, the surface current distributions are investigated to explain the polarization conversion mechanism. Finally, a good agreement is achieved between simulated and measured results. The polarization converter can be applied in terahertz imaging, communication and stealthy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J, Zhang A, Joines W T and Liu QH, A miniaturized circularly polarized microstrip antenna with bandwidth enhancement, IEEE International Symposium on Antennas and Propagation, 41 (2016).

  2. Ryzhkov A V, Giangrande S E, Melnikov V M and Schuur T J, Journal of Atmospheric & Oceanic Technology 22, 1138 (2004).

    Article  ADS  Google Scholar 

  3. Maltsev A, Perahia E, Maslennikov R, Sevastyanov A, Lomayev A and Khoryaev A, IEEE Antennas & Wireless Propagation Letters 9, 413 (2010).

    Article  ADS  Google Scholar 

  4. Meissner T and Wentz F J, IEEE Transactions on Geoscience & Remote Sensing 44, 506 (2006).

    Article  ADS  Google Scholar 

  5. Bao Q, Zhang H, Wang B, Ni Z, Lim, C, Wang Y, Tang D and Loh K, Nature Photonics 5, 411 (2011).

    Article  ADS  Google Scholar 

  6. Zheng J and Wen X, Optics Express 22, 28292 (2014).

    Article  ADS  Google Scholar 

  7. Cheng Y Z, Withayachumnankul W, Upadhyay A, Hiadland D, Nie Y, Gong R, Bhaskaran M, Sriram S and Abbott D Applied Physics Letters 105, 26 (2014).

    Google Scholar 

  8. Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X, Chinese Physics B 24, 253 (2015).

    Google Scholar 

  9. Liu Y, Xia S, Shi H, Zhang A and Xu Z, Applied Physics B 122, 178 (2016).

    Article  Google Scholar 

  10. Li S J, Xu L M, Cao X Y, Han J, Zhang Z, Liu X, Feng K and Zhang C, Radio–engineering 25, 707 (2016).

    Article  Google Scholar 

  11. Xu K K, Xiao Z Y and Tang J Y, Plasmonics 12, 1 (2016).

    Google Scholar 

  12. Zhou L, Zhao G Z and Li Y H, Laser & Optoelectronics Progress 55, 041602 (2018). (in Chinese)

    Article  Google Scholar 

  13. Li Y H, Zhou L and Zhao G Z, Chinese Journal of Laser 45, 0314001 (2018). (in Chinese)

    Article  Google Scholar 

  14. Fu Y N, Zhang X Q, Zhao G Z, Li Y H and Yu J Y, Acta Physica Sinica 66, 180701 (2017). (in Chinese)

    Google Scholar 

  15. Chen H T, Taylor A J and Yu N, Reports on Progress in Physics Physical Society 79, 076401 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-jun Shen  (沈大俊).

Additional information

This work has been supported by the New Direction Cultivation Project of Chongqing University of Posts and Telecommunications (No.A2014-116).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Shen, Dj. & Yan, Yj. Design of broadband polarization converter for terahertz waves. Optoelectron. Lett. 14, 434–437 (2018). https://doi.org/10.1007/s11801-018-8072-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-018-8072-3

Navigation