Skip to main content

Advertisement

Log in

Treatment of Infrapopliteal Critical Limb Ischemia in 2013: The Wound Perfusion Approach

  • Peripheral Vascular Disease (M Shishehbor, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The primary goals of treatment for critical limb ischemia (CLI) are alleviation of ischemic rest pain, healing of arterial insufficiency ulcers, and improving quality of life. These goals are directed toward preventing limb loss and CLI-related mortality. Arterial revascularization serves as the foundation of a contemporary approach to promote amputation-free survival. Mounting evidence supports a wound-directed angiosome revascularization approach, increasingly achieved with endovascular techniques. Innovations in technology and wound-perfusion strategy have advanced patient care and are accelerating the pace of CLI treatment. The evolving angiosome revascularization approach has been augmented with a multidisciplinary wound care strategy that deserves particular emphasis. These state-of-the-art advances in CLI management are reported herein with considerations for the future treatment of CLI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. •• Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67. doi:10.1016/j.jvs.2006.12.037. Expertly-written and thorough consensus document on the management of CLI.

    Article  PubMed  Google Scholar 

  2. Allie DE, Hebert CJ, Ingraldi A, Patlola RR, Walker CM. 24-carat gold, 14-carat gold, or platinum standards in the treatment of critical limb ischemia: bypass surgery or endovascular intervention? J Endovasc Ther. 2009;16 Suppl 1:I134–46. doi:10.1583/08-2599.1.

    PubMed  Google Scholar 

  3. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol. 2006;47:1239–312. doi:10.1016/j.jacc.2005.10.009.

    Article  PubMed  Google Scholar 

  4. Hirsch AT, Murphy TP, Lovell MB, Twillman G, Treat-Jacobson D, Harwood EM, et al. Gaps in public knowledge of peripheral arterial disease: the first national PAD public awareness survey. Circulation. 2007;116:2086–94. doi:10.1161/CIRCULATIONAHA.107.725101.

    Article  PubMed  Google Scholar 

  5. Hasanadka R, McLafferty RB, Moore CJ, Hood DB, Ramsey DE, Hodgson KJ. Predictors of wound complications following major amputation for critical limb ischemia. J Vasc Surg. 2011;54:1374–82. doi:10.1016/j.jvs.2011.04.048.

    Article  PubMed  Google Scholar 

  6. • Goodney PP, Travis LL, Nallamothu BK, Holman K, Suckow B, Henke PK, et al. Variation in the use of lower extremity vascular procedures for critical limb ischemia. Circ Cardiovasc Qual Outcomes. 2012;5:94–102. doi:10.1161/CIRCOUTCOMES.111.962233. Contemporary evaluation of practice patterns for CLI in New England.

    Article  PubMed  Google Scholar 

  7. Henry AJ, Hevelone ND, Belkin M, Nguyen LL, Henry AJ, Hevelone ND, et al. Socioeconomic and hospital-related predictors of amputation for critical limb ischemia. J Vasc Surg. 2011;53:330–9 e1. doi:10.1016/j.jvs.2010.08.077.

    Article  PubMed  Google Scholar 

  8. Kudo T, Chandra FA, Kwun WH, Haas BT, Ahn SS. Changing pattern of surgical revascularization for critical limb ischemia over 12 years: endovascular vs. open bypass surgery. J Vasc Surg. 2006;44:304–13.

    Article  PubMed  Google Scholar 

  9. Romiti M, Albers M, Brochado-Neto FC, Durazzo AE, Pereira CA, De Luccia N. Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg. 2008;47:975–81. doi:10.1016/j.jvs.2008.01.005.

    Article  PubMed  Google Scholar 

  10. • Conte MS, Bandyk DF, Clowes AW, Moneta GL, Seely L, Lorenz TJ, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43:742–51; discussion 51. doi:10.1016/j.jvs.2005.12.058. Among the most robust evidence for lower extremity bypass surgery in CLI.

  11. Dorros G, Jaff MR, Dorros AM, Mathiak LM, He T. Tibioperoneal (outflow lesion) angioplasty can be used as primary treatment in 235 patients with critical limb ischemia: 5-year follow-up. Circulation. 2001;104:2057–62.

    Article  PubMed  CAS  Google Scholar 

  12. • Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, et al. Bypass vs angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366:1925–34. doi:10.1016/S0140-6736(05)67704-5. Despite its flaws, a fundemental comparison trial of bypass surgery and balloon angioplasty for CLI.

    Article  PubMed  CAS  Google Scholar 

  13. Simons JP, Schanzer A, Nolan BW, Stone DH, Kalish JA, Cronenwett JL, et al. Outcomes and practice patterns in patients undergoing lower extremity bypass. J Vasc Surg. 2012;55:1629–36. doi:10.1016/j.jvs.2011.12.043.

    Article  PubMed  Google Scholar 

  14. • Jones WS, Patel MR, Dai D, Subherwal S, Stafford J, Calhoun S, et al. Temporal trends and geographic variation of lower-extremity amputation in patients with peripheral artery disease: results from U.S. Medicare 2000–2008. J Am Coll Cardiol. 2012. doi:10.1016/j.jacc.2012.08.983. Provides insight into evolving practice patterns of contemporary CLI management with demonstration of variablility across centers.

    Google Scholar 

  15. Kawarada O, Fujihara M, Higashimori A, Yokoi Y, Honda Y, Fitzgerald PJ. Predictors of adverse clinical outcomes after successful infrapopliteal intervention. Catheter Cardiovasc Diagn. 2012;80:861–71. doi:10.1002/ccd.24370.

    Article  Google Scholar 

  16. Ortmann J, Gahl B, Diehm N, Dick F, Traupe T, Baumgartner I. Survival benefits of revascularization in patients with critical limb ischemia and renal insufficiency. J Vasc Surg. 2012;56:737–45 e1. doi:10.1016/j.jvs.2012.02.049.

    Article  PubMed  Google Scholar 

  17. Brosi P, Dick F, Do DD, Schmidli J, Baumgartner I, Diehm N. Revascularization for chronic critical lower limb ischemia in octogenarians is worthwhile. J Vasc Surg. 2007;46:1198–207. doi:10.1016/j.jvs.2007.07.047.

    Article  PubMed  Google Scholar 

  18. Rooke TW, Hirsch AT, Misra S, Sidawy AN, Beckman JA, Findeiss LK, et al. 2011 ACCF/AHA Focused Update of the Guideline for the Management of Patients With Peripheral Artery Disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2011;58:2020–45. doi:10.1016/j.jacc.2011.08.023.

    Article  PubMed  Google Scholar 

  19. Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg. 1987;40:113–41.

    Article  PubMed  CAS  Google Scholar 

  20. Iida O, Nanto S, Uematsu M, Ikeoka K, Okamoto S, Dohi T, et al. Importance of the angiosome concept for endovascular therapy in patients with critical limb ischemia. Catheter Cardiovasc Diagn. 2010;75:830–6. doi:10.1002/ccd.22319.

    Google Scholar 

  21. • Attinger CE, Evans KK, Bulan E, Blume P, Cooper P. Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions, and revascularization. Plast Reconstr Surg. 2006;117(7 Suppl):261S–93S. doi:10.1097/01.prs.0000222582.84385.54. Expertly presented overview of the lower extremity angiosomes.

    PubMed  CAS  Google Scholar 

  22. Simons JP, Goodney PP, Nolan BW, Cronenwett JL, Messina LM, Schanzer A. Failure to achieve clinical improvement despite graft patency in patients undergoing infrainguinal lower extremity bypass for critical limb ischemia. J Vasc Surg. 2010;51:1419–24. doi:10.1016/j.jvs.2010.01.083.

    Article  PubMed  Google Scholar 

  23. Alexandrescu VA, Hubermont G, Philips Y, Guillaumie B, Ngongang C, Vandenbossche P, et al. Selective primary angioplasty following an angiosome model of reperfusion in the treatment of Wagner 1-4 diabetic foot lesions: practice in a multidisciplinary diabetic limb service. J Endovasc Ther. 2008;15:580–93. doi:10.1583/08-2460.1.

    Article  PubMed  Google Scholar 

  24. Neville RF, Attinger CE, Bulan EJ, Ducic I, Thomassen M, Sidawy AN. Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg. 2009;23:367–73. doi:10.1016/j.avsg.2008.08.022.

    Article  PubMed  Google Scholar 

  25. • Iida O, Soga Y, Hirano K, Kawasaki D, Suzuki K, Miyashita Y, et al. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept in patients with critical limb ischemia presenting with isolated below-the-knee lesions. J Vasc Surg. 2012;55:363–70 e5. doi:10.1016/j.jvs.2011.08.014. Iida and colleagues present 5-year results of an angiosome-directed revascularization approach that illustrates the direction of CLI management.

    Article  PubMed  Google Scholar 

  26. Varela C, Acin F, de Haro J, Bleda S, Esparza L, March JR. The role of foot collateral vessels on ulcer healing and limb salvage after successful endovascular and surgical distal procedures according to an angiosome model. Vasc Endovasc Surg. 2010;44:654–60. doi:10.1177/1538574410376601.

    Article  Google Scholar 

  27. Slim HZH, Edmonds M, Rashid H. The impact of arterial pedal arch quality and angiosome revascularization on the outcome of distal bypass surgery. J Vasc Surg. 2012;SS2 Suppl 1:16S–7S.

    Article  Google Scholar 

  28. Fernandez N, McEnaney R, Marone LK, Rhee RY, Leers S, Makaroun M, et al. Multilevel vs isolated endovascular tibial interventions for critical limb ischemia. J Vasc Surg. 2011;54:722–9. doi:10.1016/j.jvs.2011.03.232.

    Article  PubMed  Google Scholar 

  29. Chiriano J, Bianchi C, Teruya TH, Mills B, Bishop V, Abou-Zamzam Jr AM. Management of lower extremity wounds in patients with peripheral arterial disease: a stratified conservative approach. Ann Vasc Surg. 2010;24:1110–6. doi:10.1016/j.avsg.2010.07.012.

    Article  PubMed  Google Scholar 

  30. Vuorisalo S, Venermo M, Lepantalo M. Treatment of diabetic foot ulcers. J Cardiovasc Surg. 2009;50:275–91.

    CAS  Google Scholar 

  31. Schultz GS, Barillo DJ, Mozingo DW, Chin GA. Wound bed preparation and a brief history of TIME. Int Wound J. 2004;1:19–32. doi:10.1111/j.1742-481x.2004.00008.x.

    Article  PubMed  Google Scholar 

  32. Kim ES, Wattanakit K, Gornik HL. Using the ankle-brachial index to diagnose peripheral artery disease and assess cardiovascular risk. Cleve Clin J Med. 2012;79:651–61. doi:10.3949/ccjm.79a.11154.

    Article  PubMed  Google Scholar 

  33. Brooks B, Dean R, Patel S, Wu B, Molyneaux L, Yue DK. TBI or not TBI: that is the question. Is it better to measure toe pressure than ankle pressure in diabetic patients? Diabetic Med. 2001;18:528–32.

    Article  PubMed  CAS  Google Scholar 

  34. • Yamada T, Ohta T, Ishibashi H, Sugimoto I, Iwata H, Takahashi M, et al. Clinical reliability and utility of skin perfusion pressure measurement in ischemic limbs—comparison with other noninvasive diagnostic methods. J Vasc Surg. 2008;47:318–23. doi:10.1016/j.jvs.2007.10.045. Well presented trial of noninvasive diagnostic methods for CLI follow-up care.

    Article  PubMed  Google Scholar 

  35. Faglia E, Clerici G, Caminiti M, Quarantiello A, Curci V, Morabito A. Predictive values of transcutaneous oxygen tension for above-the-ankle amputation in diabetic patients with critical limb ischemia. Eur J Vasc Surg. 2007;33:731–6. doi:10.1016/j.ejvs.2006.12.027.

    Article  CAS  Google Scholar 

  36. Faglia E, Clerici G, Clerissi J, Gabrielli L, Losa S, Mantero M, et al. Early and five-year amputation and survival rate of diabetic patients with critical limb ischemia: data of a cohort study of 564 patients. Eur J Vasc Surg. 2006;32:484–90. doi:10.1016/j.ejvs.2006.03.006.

    Article  CAS  Google Scholar 

  37. Castronuovo Jr JJ, Adera HM, Smiell JM, Price RM. Skin perfusion pressure measurement is valuable in the diagnosis of critical limb ischemia. J Vasc Surg. 1997;26:629–37.

    Article  PubMed  Google Scholar 

  38. Faris I, Duncan H. Skin perfusion pressure in the prediction of healing in diabetic patients with ulcers or gangrene of the foot. J Vasc Surg. 1985;2:536–40.

    PubMed  CAS  Google Scholar 

  39. Utsunomiya M, Nakamura M, Nakanishi M, Takagi T, Hara H, Onishi K, et al. Impact of wound blush as an angiographic end point of endovascular therapy for patients with critical limb ischemia. J Vasc Surg. 2012;55:113–21. doi:10.1016/j.jvs.2011.08.001.

    Article  PubMed  Google Scholar 

  40. Clair D, Shah S, Weber J. Current state of diagnosis and management of critical limb ischemia. Curr Cardiol Rep. 2012;14:160–70. doi:10.1007/s11886-012-0251-4.

    Article  PubMed  Google Scholar 

  41. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Google Scholar 

  42. Alexandrescu V, Soderstrom M, Venermo M. Angiosome theory: fact or fiction? Scand J Surg. 2012;101:125–31.

    Article  PubMed  CAS  Google Scholar 

  43. Weck M, Slesaczeck T, Rietzsch H, Munch D, Nanning T, Paetzold H, et al. Noninvasive management of the diabetic foot with critical limb ischemia: current options and future perspectives. Ther Adv Endocrinol Metab. 2011;2:247–55. doi:10.1177/2042018811427721.

    Article  PubMed  CAS  Google Scholar 

  44. Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288:2579–88.

    Article  PubMed  CAS  Google Scholar 

  45. Siablis D, Katsanos K, Karnabatidis D. Commentary: infrapopliteal angioplasty with drug-eluting stents: from heart to toe. J Endovasc Ther. 2010;17:488–91. doi:10.1583/10-3073C.1.

    Article  PubMed  Google Scholar 

  46. Tepe G, Zeller T, Albrecht T, Heller S, Schwarzwalder U, Beregi JP, et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med. 2008;358:689–99. doi:10.1056/NEJMoa0706356.

    Article  PubMed  CAS  Google Scholar 

  47. Werk M, Langner S, Reinkensmeier B, Boettcher HF, Tepe G, Dietz U, et al. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated vs uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation. 2008;118:1358–65. doi:10.1161/CIRCULATIONAHA.107.735985.

    Article  PubMed  CAS  Google Scholar 

  48. Schmidt A, Piorkowski M, Werner M, Ulrich M, Bausback Y, Braunlich S, et al. First experience with drug-eluting balloons in infrapopliteal arteries: restenosis rate and clinical outcome. J Am Coll Cardiol. 2011;58:1105–9. doi:10.1016/j.jacc.2011.05.034.

    Article  PubMed  CAS  Google Scholar 

  49. Feiring AJ, Wesolowski AA, Lade S. Primary stent-supported angioplasty for treatment of below-knee critical limb ischemia and severe claudication: early and one-year outcomes. J Am Coll Cardiol. 2004;44:2307–14. doi:10.1016/j.jacc.2004.09.037.

    Article  PubMed  Google Scholar 

  50. Siablis D, Kraniotis P, Karnabatidis D, Kagadis GC, Katsanos K, Tsolakis J. Sirolimus-eluting vs bare stents for bailout after suboptimal infrapopliteal angioplasty for critical limb ischemia: 6-month angiographic results from a nonrandomized prospective single-center study. J Endovasc Ther. 2005;12:685–95. doi:10.1583/05-1620MR.1.

    Article  PubMed  Google Scholar 

  51. Scheinert D, Ulrich M, Scheinert S, Sax J, Braunlich S, Biamino G. Comparison of sirolimus-eluting vs. bare-metal stents for the treatment of infrapopliteal obstructions. EuroIntervention. 2006;2:169–74.

    PubMed  Google Scholar 

  52. Bosiers M, Deloose K, Verbist J, Peeters P. Percutaneous transluminal angioplasty for treatment of “below-the-knee” critical limb ischemia: early outcomes following the use of sirolimus-eluting stents. J Cardiovasc Surg. 2006;47:171–6.

    CAS  Google Scholar 

  53. Commeau P, Barragan P, Roquebert PO. Sirolimus for below the knee lesions: mid-term results of SiroBTK study. Catheter Cardiovasc Diagn. 2006;68:793–8. doi:10.1002/ccd.20893.

    Article  Google Scholar 

  54. Siablis D, Karnabatidis D, Katsanos K, Diamantopoulos A, Spiliopoulos S, Kagadis GC, et al. Infrapopliteal application of sirolimus-eluting vs bare metal stents for critical limb ischemia: analysis of long-term angiographic and clinical outcome. J Vasc Intervent Radiol. 2009;20:1141–50. doi:10.1016/j.jvir.2009.05.031.

    Article  Google Scholar 

  55. Feiring AJ, Krahn M, Nelson L, Wesolowski A, Eastwood D, Szabo A. Preventing leg amputations in critical limb ischemia with below-the-knee drug-eluting stents: the PaRADISE (PReventing Amputations using Drug eluting StEnts) trial. J Am Coll Cardiol. 2010;55:1580–9. doi:10.1016/j.jacc.2009.11.072.

    Article  PubMed  Google Scholar 

  56. Werner M, Schmidt A, Freyer M, Bausback Y, Braunlich S, Friedenberger J, et al. Sirolimus-eluting stents for the treatment of infrapopliteal arteries in chronic limb ischemia: long-term clinical and angiographic follow-up. J Endovasc Ther. 2012;19:12–9. doi:10.1583/11-3665.1.

    Article  PubMed  Google Scholar 

  57. • Scheinert D, Katsanos K, Zeller T, Koppensteiner R, Commeau P, Bosiers M, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the ACHILLES Trial. J Am Coll Cardiol. 2012;60:2290–5. doi:10.1016/j.jacc.2012.08.989. Neatly presented 1-year results of DES compared with balloon angioplasty in infrapopliteal CLI.

    Article  PubMed  Google Scholar 

  58. Rocha-Singh KJ, Jaff M, Joye J, Laird J, Ansel G, Schneider P. Major adverse limb events and wound healing following infrapopliteal artery stent implantation in patients with critical limb ischemia: The XCELL trial. Catheter Cardiovasc Diagn. 2012;80:1042–51. doi:10.1002/ccd.24485.

    Article  Google Scholar 

  59. • Powell RJ. Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J Vasc Surg. 2012;56:264–6. doi:10.1016/j.jvs.2012.03.255. Contemporary review of biologics that may impact CLI management in the future.

    Article  PubMed  Google Scholar 

  60. Wara AK, Croce K, Foo S, Sun X, Icli B, Tesmenitsky Y, et al. Bone marrow-derived CMPs and GMPs represent highly functional proangiogenic cells: implications for ischemic cardiovascular disease. Blood. 2011;118:6461–4. doi:10.1182/blood-2011-06-363457.

    Article  PubMed  CAS  Google Scholar 

  61. Sprengers RW, Lips DJ, Moll FL, Verhaar MC. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann Surg. 2008;247:411–20. doi:10.1097/SLA.0b013e318153fdcb.

    Article  PubMed  Google Scholar 

  62. Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schluter M, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Intervent. 2011;4:26–37. doi:10.1161/CIRCINTERVENTIONS.110.958348.

    Article  Google Scholar 

  63. Sprengers RW, Moll FL, Teraa M, Verhaar MC. Rationale and design of the JUVENTAS trial for repeated intra-arterial infusion of autologous bone marrow-derived mononuclear cells in patients with critical limb ischemia. J Vasc Surg. 2010;51:1564–8. doi:10.1016/j.jvs.2010.02.020.

    Article  PubMed  Google Scholar 

  64. Montero-Baker M, Schmidt A, Braunlich S, Ulrich M, Thieme M, Biamino G, et al. Retrograde approach for complex popliteal and tibioperoneal occlusions. J Endovasc Ther. 2008;15:594–604. doi:10.1583/08-2440.1.

    Article  PubMed  Google Scholar 

  65. Feiring AJ, Wesolowski AA. Antegrade popliteal artery approach for the treatment of critical limb ischemia in patients with occluded superficial femoral arteries. Cathet Cardiovasc Diagn. 2007;69:665–70. doi:10.1002/ccd.21069.

    Article  Google Scholar 

  66. Roedersheimer LR, Feins R, Green RM. Doppler evaluation of the pedal arch. Am J Surg. 1981;142:601–4.

    Article  PubMed  CAS  Google Scholar 

  67. Friedman SG, Safa TK. Pedal branch arterial bypass for limb salvage. Am Surg. 2002;68:446–8.

    PubMed  Google Scholar 

  68. Dorweiler B, Neufang A, Schmiedt W, Oelert H. Pedal arterial bypass for limb salvage in patients with diabetes mellitus. Eur J Vasc Surg. 2002;24:309–13.

    Article  CAS  Google Scholar 

  69. Davidson III JT, Callis JT. Arterial reconstruction of vessels in the foot and ankle. Ann Surg. 1993;217:699–708. discussion - 10.

    Article  PubMed  Google Scholar 

  70. Kawarada O, Yokoi Y, Sekii H, Higashiue S. Retrograde crossing through the pedal arch for totally occluded tibial artery. J Intervent Cardiol. 2008;21:342–6. doi:10.1111/j.1540-8183.2008.00350.x.

    Article  PubMed  Google Scholar 

  71. Fusaro M, Tashani A, Mollichelli N, Medda M, Inglese L, Biondi-Zoccai GG. Retrograde pedal artery access for below-the-knee percutaneous revascularisation. J Cardiovasc Med. 2007;8:216–8. doi:10.2459/01.JCM.0000260819.30423.db.

    Article  Google Scholar 

  72. Palena LM, Manzi M. Extreme below-the-knee interventions: retrograde transmetatarsal or transplantar arch access for foot salvage in challenging cases of critical limb ischemia. J Endovasc Ther. 2012;19:805–11. doi:10.1583/JEVT-12-3998R.1.

    Article  PubMed  Google Scholar 

  73. Kawarada O, Yokoi Y. Dorsalis pedis artery stenting for limb salvage. Catheter Cardiovasc Diagn. 2008;71:976–82. doi:10.1002/ccd.21539.

    Article  Google Scholar 

  74. Spinosa DJ, Harthun NL, Bissonette EA, Cage D, Leung DA, Angle JF, et al. Subintimal arterial flossing with antegrade-retrograde intervention (SAFARI) for subintimal recanalization to treat chronic critical limb ischemia. J Vasc Intervent Radiol. 2005;16:37–44. doi:10.1097/01.RVI.0000141336.53745.4A.

    Article  Google Scholar 

Download references

Conflict of Interest

Matthew C. Bunte declares that he has no conflict of interest.

M. Shishehbor: has been a consultant, without any personal compensation, for Abbott Vascular, BARD, Medtronic, Bayer, and Spectranetics; and has received travel/accommodations expenses covered or reimbursed from Abbott Vascular, BARD, Medtronic, Bayer, and Spectranetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi H. Shishehbor.

Additional information

This article is part of the Topical Collection on Peripheral Vascular Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunte, M.C., Shishehbor, M.H. Treatment of Infrapopliteal Critical Limb Ischemia in 2013: The Wound Perfusion Approach. Curr Cardiol Rep 15, 363 (2013). https://doi.org/10.1007/s11886-013-0363-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0363-5

Keywords

Navigation