Skip to main content
Log in

Current Treatment Strategies for Heart Failure: Role of Device Therapy and LV Reconstruction

  • Arrhythmia (D Spragg, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Medical care of heart failure (HF) begins with the determination of the cause of the heart failure and diagnosing potential reversible causes (i.e., coronary heart disease, hyperthyroidism, etc.). Medical therapy includes pharmacological and nonpharmacological strategies that limit and/or reverse the signs and symptoms of HF. Initial behavior modification includes dietary sodium and fluid restriction to avoid weight gain; and encouraging physical activity when appropriate. Optimization of medical therapy is the first line of treatment that includes the use of diuretics, vasodilators (i.e., ACE inhibitors or ARBs), beta blockers, and potentially inotropic agents and anticoagulation depending on the patient’s severity of heart failure and LV dysfunction. As heart failure advances despite optimized medical management, cardiac resynchronization therapy (CRT), and implantable cardioverter defibrillators (ICDs) are appropriate device therapies. The development of progressive end-stage HF, despite maximal medical therapy, necessitates the consideration of mechanical circulatory devices such as ventricular assist devices (VADs) either as a bridge to heart transplantation or as destination therapy. Despite the advances in the treatment of heart failure, there is still a large morbidity and mortality associated with HF, thus the need to develop newer strategies for the treatment of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mozaffarian D et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.

    Article  Google Scholar 

  2. Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012;21(5):365–71.

    Article  CAS  PubMed  Google Scholar 

  3. von Lueder TG, Krum H. New medical therapies for heart failure. Nat Rev Cardiol. 2015;12(12):730–40.

    Article  Google Scholar 

  4. Bigger Jr JT. Prophylactic use of implanted cardiac defibrillators in patients at high risk for ventricular arrhythmias after coronary-artery bypass graft surgery. Coronary Artery Bypass Graft (CABG) Patch Trial Investigators. N Engl J Med. 1997;337(22):1569–75.

    Article  PubMed  Google Scholar 

  5. Buxton AE et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med. 1999;341(25):1882–90.

    Article  CAS  PubMed  Google Scholar 

  6. Moss AJ et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–83. Key trial demonstrating the utility of IDCs as primary prevention of preventing SCD in patients coronary artery disease and LV dysfunction.

    Article  PubMed  Google Scholar 

  7. Kadish A et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004;350(21):2151–8. Key trial demonstrating the utility of IDCs as primary prevention of preventing SCD in patients nonischemic dilated cardiomyopathy.

    Article  CAS  PubMed  Google Scholar 

  8. Hohnloser SH et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med. 2004;351(24):2481–8.

    Article  CAS  PubMed  Google Scholar 

  9. Bardy GH et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37.

    Article  CAS  PubMed  Google Scholar 

  10. Steinbeck G et al. Defibrillator implantation early after myocardial infarction. N Engl J Med. 2009;361(15):1427–36.

    Article  CAS  PubMed  Google Scholar 

  11. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. N Engl J Med. 1997; 337(22): 1576–83.

  12. Kuck KH et al. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest: the Cardiac Arrest Study Hamburg (CASH). Circulation. 2000;102(7):748–54.

    Article  CAS  PubMed  Google Scholar 

  13. Connolly SJ et al. Canadian implantable defibrillator study (CIDS): a randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation. 2000;101(11):1297–302.

    Article  CAS  PubMed  Google Scholar 

  14. Epstein AE et al. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2013;61(3):e6–75.

    Article  PubMed  Google Scholar 

  15. Moss AJ et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med. 1996;335(26):1933–40. Key trial demonstrating the benefits of ICD for secondary prevention of SCD.

    Article  CAS  PubMed  Google Scholar 

  16. Abraham WT, Hayes DL. Cardiac resynchronization therapy for heart failure. Circulation. 2003;108(21):2596–603.

    Article  PubMed  Google Scholar 

  17. Ukkonen H et al. Effect of cardiac resynchronization on myocardial efficiency and regional oxidative metabolism. Circulation. 2003;107(1):28–31.

    Article  CAS  PubMed  Google Scholar 

  18. Nelson GS et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation. 2000;102(25):3053–9.

    Article  CAS  PubMed  Google Scholar 

  19. Rose EA et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    Article  CAS  PubMed  Google Scholar 

  20. Slaughter MS et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  21. Xie A, Phan K, Yan TD. Durability of continuous-flow left ventricular assist devices: a systematic review. Ann Cardiothorac Surg. 2014;3(6):547–56.

    PubMed  PubMed Central  Google Scholar 

  22. McIlvennan CK et al. Clinical outcomes after continuous-flow left ventricular assist device: a systematic review. Circ Heart Fail. 2014;7(6):1003–13.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park SJ et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5(2):241–8.

    Article  PubMed  Google Scholar 

  24. Yamaguchi A et al. Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy. Ann Thorac Surg. 2005;79(2):456–61.

    Article  PubMed  Google Scholar 

  25. Athanasuleas CL et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J Am Coll Cardiol. 2004;44(7):1439–45.

    Article  Google Scholar 

  26. Jones RH et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med. 2009;360(17):1705–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Isomura T et al. Volume reduction rate by surgical ventricular restoration determines late outcome in ischaemic cardiomyopathy. Eur J Heart Fail. 2011;13(4):423–31.

    Article  PubMed  Google Scholar 

  28. Di Donato M, Castelvecchio S, Menicanti L. End-systolic volume following surgical ventricular reconstruction impacts survival in patients with ischaemic dilated cardiomyopathy. Eur J Heart Fail. 2010;12(4):375–81.

    Article  PubMed  Google Scholar 

  29. Buckberg G, Athanasuleas C, Conte J. Surgical ventricular restoration for the treatment of heart failure. Nat Rev Cardiol. 2012;9(12):703–16.

    Article  PubMed  Google Scholar 

  30. Fukamachi K, McCarthy PM. Initial safety and feasibility clinical trial of the myosplint device. J Card Surg. 2005;20(6):S43–7.

    Article  PubMed  Google Scholar 

  31. Mann DL et al. Clinical evaluation of the CorCap Cardiac Support Device in patients with dilated cardiomyopathy. Ann Thorac Surg. 2007;84(4):1226–35.

    Article  PubMed  Google Scholar 

  32. Sabbah HN et al. Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment. Circ Res. 2003;93(11):1095–101.

    Article  CAS  PubMed  Google Scholar 

  33. Saavedra WF et al. Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol. 2002;39(12):2069–76.

    Article  CAS  PubMed  Google Scholar 

  34. Starling RC et al. Sustained benefits of the CorCap Cardiac Support Device on left ventricular remodeling: three year follow-up results from the Acorn clinical trial. Ann Thorac Surg. 2007;84(4):1236–42.

    Article  PubMed  Google Scholar 

  35. Costanzo MR et al. Prospective evaluation of elastic restraint to lessen the effects of heart failure (PEERLESS-HF) trial. J Card Fail. 2012;18(6):446–58.

    Article  PubMed  Google Scholar 

  36. Singelyn JM et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59(8):751–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu J et al. Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2009;137(1):180–7.

    Article  PubMed  Google Scholar 

  38. Sabbah HN et al. Augmentation of left ventricular wall thickness with alginate hydrogel im- plants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail. 2013;1:252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee RJ et al. The feasibility and safety of Algisyl-LVR as a method of left ventricular augmentation in patients with dilated cardiomyopathy: initial first in man clinical results. Int J Cardiol. 2015;199:18–24.

    Article  PubMed  Google Scholar 

  40. Ankar SD et al. A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J. 2015;36(34):2297–309. First human trial to demonstrate the benefit of a tissue engineering approach for the treatment of HF.

    Article  Google Scholar 

  41. Mann DL et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail. 2016;18(3):314–25. Demonstration that LV augmentation via a tissue engineering approach is durable and safe.

    Article  CAS  PubMed  Google Scholar 

  42. Cleland JG et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.

    Article  CAS  PubMed  Google Scholar 

  43. Bristow MR et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50.

    Article  CAS  PubMed  Google Scholar 

  44. Young JB et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. Jama. 2003;289(20):2685–94. Key trial demonstrating the benefit of cardiac resynchonization therapy in patients with advanced heart failure.

    Article  PubMed  Google Scholar 

  45. Abraham WT et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845–53.

    Article  PubMed  Google Scholar 

  46. Cazeau S et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med. 2001;344(12):873–80.

    Article  CAS  PubMed  Google Scholar 

  47. Auricchio A et al. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol. 2002;39(12):2026–33.

    Article  PubMed  Google Scholar 

  48. Tang AS et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 2010;363(25):2385–95.

    Article  CAS  PubMed  Google Scholar 

  49. Zareba W et al. Effectiveness of Cardiac Resynchronization Therapy by QRS Morphology in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT). Circulation. 2011;123(10):1061–72.

    Article  PubMed  Google Scholar 

  50. Daubert C et al. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial. J Am Coll Cardiol. 2009;54(20):1837–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Lee MD, PhD.

Ethics declarations

Conflict of Interest

Praneeth Janaswamy, Tomos E. Walters, Babak Nazer, and Randall J. Lee each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Arrhythmia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janaswamy, P., Walters, T.E., Nazer, B. et al. Current Treatment Strategies for Heart Failure: Role of Device Therapy and LV Reconstruction. Curr Treat Options Cardio Med 18, 57 (2016). https://doi.org/10.1007/s11936-016-0479-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0479-1

Keywords

Navigation