Skip to main content
Log in

Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tifton 85 bermudagrass, developed at the ARS-USDA in Tifton, GA, is grown on over ten million acres in the USA for hay and forage. Of the bermudagrass cultivars, Tifton 85 exhibits improved digestibility because the ratio of ether- to ester-linked phenolic acids has been lowered using traditional plant breeding techniques. A previously developed pressurized batch hot water (PBHW) method was used to treat Tifton 85 bermudagrass for enzymatic hydrolysis. Native grass (untreated) and PBHW-pretreated material were compared as substrates for fungal cultivation to produce enzymes. Cellulase activity, measured via the filter paper assay, was higher for fungi cultivated on PBHW-pretreated grass, whereas the other nine enzyme assays produced higher activities for the untreated grass. Ferulic acid and vanillin levels increased significantly for the enzyme preparations produced using PBHW-pretreated grass and the release of these phenolic compounds may have contributed to the observed reduction in enzyme activities. Culture supernatant from Tifton 85 bermudagrass-grown fungi were combined with two commercial enzyme preparations and the enzyme activity profiles are reported. The amount of reducing sugar liberated by the enzyme mixture from Hypocrea jecorina (after 192 h incubation with untreated bermudagrass) individually or in combination with feruloyl esterase was 72.1 and 84.8%, respectively, of the commercial cellulase preparation analyzed under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fedoroff, N. V., & Cohen, J. E. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 5903–5907.

    Article  CAS  Google Scholar 

  2. Sun, Y., & Cheng, J. J. (2005). Bioresource Technology, 96, 1599–1606.

    Article  CAS  Google Scholar 

  3. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Proceedings National Academy of Sciences, 103, 11206–11210.

    Article  CAS  Google Scholar 

  4. Burton, G. W., Gates, R. N., & Hill, G. M. (1993). Crop Science, 33, 644–645.

    Article  Google Scholar 

  5. Mandedebvu, P., West, J. W., & Hill, G. M. (1999). Journal of Animal Science, 77, 1572–1586.

    Google Scholar 

  6. Anderson, W. F., Peterson, J., Akin, D. E., & Morrisson III, W. H. (2005). Applied Biochemistry and Biotechnology, 121–124, 303–310.

    Article  Google Scholar 

  7. Akin, D. E. (1989). Agronomy Journal, 81, 17–25.

    Article  Google Scholar 

  8. Akin, D. E., & Chesson, A. (1989). Proceedings of the International Grassland Congress, 16, 1753–1760.

    Google Scholar 

  9. Hill, G. M., Gates, R. N., West, J. W., Watson, R. S., & Mullinix, B. G. (2001). Journal of Animal Science, 79, 235.

    Google Scholar 

  10. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

  11. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  12. Brandon, S. K., Eiteman, M. A., Patel, K., Richbourg, M., Miller, D., & Peterson, J. D. (2008). Journal of Chemical Technology and Biotechnology, 83(6) (in press).

  13. Allen, S. G., Kam, L. C., Zemann, A. J., & Antal, M. J. (1996). Industrial Engineering Chemical Research, 35, 2709–2715.

    Article  CAS  Google Scholar 

  14. Hamelinck, C. N., Hooijdonk, G. V., & Faaij, A. P. C. (2005). Biomass Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  15. Potera, C. (2006). Microbe, 1, 317–322.

    Google Scholar 

  16. Hazell, B. W., Te, , O, V. S. J., Bradner, J. R., Berquist, P. L., & Nevalainen, K. M. H. (2000). Letters in Applied Microbiology, 30, 282–286.

    Article  CAS  Google Scholar 

  17. Li, X.-L., Skory, C. D., Ximenes, E. A., Jordan, D. B., Dien, B. E., Hughes, S. R., et al. (2007). Applied Microbiology Biotechnology, 74, 1264–1275.

    Article  CAS  Google Scholar 

  18. Olsson, L., Christensen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Enzyme Microbial Technology, 33, 612–619.

    Article  CAS  Google Scholar 

  19. Ximenes, E. A., Dien, B. S., Ladisch, M. R., Mosier, N., Cotta, M. A., & Li, X.-L. (2007). Applied Biochemistry Biotechnology, 137–140, 171–183.

    Article  Google Scholar 

  20. Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M., Kilburn, D., et al. (2005b). Applied Biochemistry Biotechnology, 121–124, 163–170.

    Article  Google Scholar 

  21. Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology Bioengineering, 6, 17–34.

    Google Scholar 

  22. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  23. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Peterson, J. K., Harrison, H. F., Snook, M. E., & Jackson, D. M. (2005). Allelopathy Journal, 16, 239–249.

    Google Scholar 

  25. Acebal, C., Castillon, M. P., Estrada, P., Mata, I., Costa, E., Aguado, J., et al. (1986). Applied Microbiology and Biotechnology, 24, 218–223.

    Article  CAS  Google Scholar 

  26. Li, X.-L., Dien, B. S., Cotta, M. A., Wu, Y. V., & Saha, B. D. (2005). Applied Biochemistry Biotechnology, 121–124, 321–334.

    Article  Google Scholar 

  27. Zeilinger, S., Mach, R. L., Schindler, M., Herzog, P., & Kubicek, C. P. (1996). Journal of Biological Chemistry, 271, 25624–25629.

    Article  CAS  Google Scholar 

  28. Xu, J., Nogawa, M., Okada, H., & Morikawa, Y. (1998). Bioscience Biotechnology Biochemistry, 62, 1555–1559.

    Article  CAS  Google Scholar 

  29. Xiong, H., Turunen, O., Pastinen, O., Leisola, , & von Weymarn, M. N. (2004). Applied Microbiology Biotechnology, 64, 353–358.

    Article  CAS  Google Scholar 

  30. Aro, N., Pakula, T., & Penttilä, M. (2205). FEMS Microbiology Review, 29, 719–739.

    Article  CAS  Google Scholar 

  31. Markovic, O., Slezárik, A., & Labudová, I. (1985). FEMS Microbiology Letters, 27, 267–271.

    Article  CAS  Google Scholar 

  32. Anger, M., Malcharek, A., & Kunbauch, W. (2002). Journal of Applied Botany, 76, 47–51.

    Google Scholar 

  33. Kabel, M. A., van der Maarel, M. J. E. C., Klip, G., Voragen, A. G. J., & Schols, H. A. (2006). Biotechnology Bioengineering, 93, 56–63.

    Article  CAS  Google Scholar 

  34. Kongruang, S., Han, M. J., Breton, C. I. G., & Penner, M. H. (2004). Applied Biochemistry Biotechnology, 113–116, 213–231.

    Article  Google Scholar 

  35. Vohra, R. M., Shirkot, C. K., Dhawan, S., & Gupta, K. G. (1980). Biotechnology Bioengineering, 22, 1497–1500.

    Article  CAS  Google Scholar 

  36. Sharma, A., Milstein, O., Vered, Y., Gressel, J., & Flowers, H. M. (1985). Biotechnology Bioengineering, 27, 1095–1101.

    Article  CAS  Google Scholar 

  37. Martin, S. A., & Akin, D. E. (1988). Applied Environmental Microbiology, 54, 3019–3022.

    CAS  Google Scholar 

  38. Berlin, A., Gilkes, N., Kilburn, D., Bura, R., Markov, A., Skomarovsky, A., et al. (2005a). Enzyme Microbial Technology, 37, 175–184.

    Article  CAS  Google Scholar 

  39. Salles, B., Valentino, T., Moreland, G., Bergquist, P., Filho, E. X. F., Ximenes, E. A., & Nevalainen, H. (2007). Biotechnology Letters, 29, 1195–1201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Drs. E. Timothy Davies and Zeynep Cvetkovich for support with the small fermentation reactor, and Ms. Amruta Jangid for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Doran-Peterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ximenes, E.A., Brandon, S.K. & Doran-Peterson, J. Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass. Appl Biochem Biotechnol 146, 89–100 (2008). https://doi.org/10.1007/s12010-007-8129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8129-4

Keywords

Navigation