Skip to main content
Log in

New Potential Biocatalysts by Laccase Immobilization in PVA Cryogel Type Carrier

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Laccases are enzymes belonging to the Oxidoreductases class. These enzymes may be good biocatalysts for different processes, at laboratory and industrial levels. A successful use at industrial scale demands a higher stability of the enzyme. As an easy way to obtain longer life biocatalysts, the immobilization process is recommended. Thus, the paper presents different ways of obtaining new biocatalysts by a laccase covalent immobilization on a macroporous carrier based on poly(vinyl alcohol) cryogel. Different procedures of covalent immobilization are described, the newly obtained biocatalysts being characterized. According to the experimental data, the stability of the immobilized enzyme increased and the pH profile changed, compared with those of the free enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Puscas, L., Stanescu, M. D., Fogorasi, M., & Dalea, V. (2002). Sustainable development by environmental protection and textile biotechnology, Aurel Vlaicu University Press, Arad, pp. 200-320, in Romanian.

    Google Scholar 

  2. Wesenberg, D., Kyriakides, I., & Agatos, S. N. (2003). Biotechnol. Adv., 22, 161–187.

    Article  CAS  Google Scholar 

  3. Rodrigues Couto, S., & Toca-Herrera, J. L. (2006). Biotechnol. Adv., 24, 500–513.

    Article  Google Scholar 

  4. Rodrigues Couto, S., & Toca-Herrera, J. L. (2006). BMBR, 1(4), 117–122. http://www.academicjournals.org/BMBR.

    Google Scholar 

  5. Riva, S. (2006). Trends Biotechnol., 4(5), 219–226.

    Article  Google Scholar 

  6. Nyanhongo, G. S., Gübitz, G., Sukyai, P., Leitner, C., Haltrich, D., & Ludwig, R. (2007). Food Technol. Biotech., 45(3), 250–268.

    CAS  Google Scholar 

  7. Khani, Z., Jolivalt, C., Cretin, M., Tingry, S., & Innocent, C. (2006). Biotechnol. Lett., 28, 1779–1786.

    Article  CAS  Google Scholar 

  8. Shleev, S., Christenson, A., Serezhenkov, V., Burbaev, D., Yaropolov, A., Gorton, L., et al. (2005). Biochem. J., 385, 745–754.

    Article  CAS  Google Scholar 

  9. Claus, H. (2004). Micron, 35, 93–96.

    Article  CAS  Google Scholar 

  10. Ferraroni, M., Myasoedova, N. M., Schmatchenko, V., Leontievsky, A. A., Golovleva, L. A., Scozzafava, A., et al. (2007). BMC Struct Biol, 7, 60. doi:10.1186/1472-6807-7-60.

    Article  Google Scholar 

  11. Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Chem. Rev., 96, 2563–2605.

    Article  CAS  Google Scholar 

  12. Solomon, E. I., Chen, P., Metz, M., Lee, S. K., & Palmer, A. E. (2001). Angew. Chem. (International ed. in English), 40, 4570–4590.

    Article  CAS  Google Scholar 

  13. Thurston, C. F. (1994). Microbiology, 140, 19–26.

    Article  CAS  Google Scholar 

  14. Cao, L. (2005). Carrier-bound immobilized enzymes. Principles, application and design, Wiley, Weinheim, pp. 1–52, pp. 205–206.

    Google Scholar 

  15. Cao, L. Q., van Langen, L., & Sheldon, R. A. (2003). Curr. Opin. Biotechnol., 14, 387–394.

    Article  CAS  Google Scholar 

  16. Duran, N., Rosa, M. A., D’Annibale, A., & Gianfreda, L. (2002). Enzyme Microb. Technol., 31, 907–931.

    Article  CAS  Google Scholar 

  17. Cordi, L., Minussi, R. C., Freire, R. S., & Duran, N. (2007). Afr. J. Biotechnol., 6, 1255–1259.

    CAS  Google Scholar 

  18. Tavčar, M., Svobodová Kuplenk, J., Novotnny, C., & Pavko, A. (2006). Acta Chim. Slov., 53, 338–343.

    Google Scholar 

  19. Yinhui, D., Qiuling, W., & Shiyu, F. (2002). Lett. Appl. Microbiol., 35, 451–456.

    Article  Google Scholar 

  20. Bacheva, A. V., Plieva, F. M., Lysogorskaya, E., Filipova, I. Yu, & Lozinsky, V. I. (2001). Bioorg. Med. Chem. Lett., 11, 1005–1008.

    Article  CAS  Google Scholar 

  21. Belokon’, Y. N., Kochetkov, K. A., Plieva, F. M., Ikonnikov, N. S., Maleev, V. I., Parmar, V. S., et al. (2000). Appl. Biochem. Biotechnol., 88, 97–106.

    Article  Google Scholar 

  22. Lozinsky, V. I. (1998). Russ. Chem. Revs., 67, 573–586.

    Article  Google Scholar 

  23. Lozinsky, V. I. (2002). Russ. Chem. Revs., 71, 489–511.

    Article  CAS  Google Scholar 

  24. Kokufuta, E., & Jinbo, E. (1992). Macromolecules, 25, 3549–3552.

    Article  CAS  Google Scholar 

  25. Plieva, F. M., Kochetkov, K. A., Singh, I., Parmar, V. S., Belokon’, Y. N., & Lozinsky, V. I. (2000). Biotechnol. Lett., 22, 551–554.

    Article  CAS  Google Scholar 

  26. Lozinsky, V. I., & Zubov, A. L. (1992). Device for the formation of spherical granules on the basis of aqueous systems. Russ. Patent 2036095.

  27. Lozinsky, V. I., Domotenko, L. V., Mamtsis, A. M., & Rogozhin, S. V. (1986). Polym. Bull., 15, 333–340.

    Article  Google Scholar 

  28. Lozinsky, V. I., Vainerman, E. S., Domotenko, L. V., Mamtsis, A. M., Titova, E. F., Belavtseva, E. M., et al. (1986). Colloid & Polymer Sci., 264, 19–24.

    Article  CAS  Google Scholar 

  29. Bradford, M. M. (1976). Anal. Biochem., 72, 248–254.

    Article  CAS  Google Scholar 

  30. Bourbonnais, R., Paice, M. G., Reid, I. D., Lanthier, P., & Yaguchi, M. (1995). Appl. Environ. Microbiol., 61, 1876–1880.

    CAS  Google Scholar 

  31. Hassan, C. M., & Peppas, N. A. (2000). Adv. Polym. Sci., 153, 37–65.

    Article  CAS  Google Scholar 

  32. Lozinsky, V. I., Damshkaln, L. G., Shaskol’skii, B. L., Babushkina, N. A., Kurochkin, I. N., & Kurochkin, I. I. (2007). Colloid J., 69, 747–764.

    Article  CAS  Google Scholar 

  33. Lozinsky, V. I., Zubov, A. L., & Titova, E. F. (1997). Enzyme Microb. Technol., 20, 182–190.

    Article  CAS  Google Scholar 

  34. Gordon, M. J., Chu, K. C., Margaritis, A., Martin, A. J., Ethier, C. R., & Rutt, B. K. (1999). Biotechnol. Bioeng., 65, 459–467.

    Article  CAS  Google Scholar 

  35. Stoj, C. S., & Kosman, D. J. (2005). Copper proteins: Oxidases. In R. B. King (Ed.), Encyclopedia of inorganic chemistry, 2nd ed., vol. 2 (King R.B. ed.), Wiley, New York, pp. 1134–1159.

    Google Scholar 

  36. Palmer, T. (1991). Understanding enzymes, 3rd ed, Ellis Horwood, New York, p. 366.

    Google Scholar 

  37. Stanescu, M. D., Bucur, M. S., Pustianu, M., Mihuta, S., & Raileanu, M. (2003). Modifying wool dyeing properties with immobilized enzymes. Proceedings of Aachen Textil Conference, DWI Reports, 126, 465–468.

    CAS  Google Scholar 

  38. Yamak, O., Kalkan, N. A., Aksoy, S., Altinok, H., & Hasirici, N. (2009). Process Biochem. doi:10.1016/j.procbio.2008.12.08.

    Google Scholar 

  39. Rexova-Benkova, L., & Mrackova-Dobrotova, M. (1981). Carbohydr. Res., 98, 115–122.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Romanian Academy (grant 1R-2008) and by the Russian Foundation for Basic Research (Project # 07-03-91682_RA_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Dina Stanescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanescu, M.D., Fogorasi, M., Shaskolskiy, B.L. et al. New Potential Biocatalysts by Laccase Immobilization in PVA Cryogel Type Carrier. Appl Biochem Biotechnol 160, 1947–1954 (2010). https://doi.org/10.1007/s12010-009-8755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8755-0

Keywords

Navigation