Skip to main content
Log in

Co-Expression of an Organic Solvent-Tolerant Lipase and its Cognate Foldase of Pseudomonas aeruginosa CS-2 and the Application of the Immobilized Recombinant Lipase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The genes of CS-2 lipase and its cognate foldase were cloned from Pseudomonas aeruginosa CS-2. A stop codon was not found in the lipase gene. The amino acid sequence deduced from the lipase gene from P. aeruginosa CS-2 showed 97.8%, 71.3%, and 71.2% identity with lipases from P. aeruginosa LST-03, P seudomonas mendocina ymp, and Pseudomonas stutzeri A1501, respectively. The co-expression of CS-2 lipase and its cognate foldase of P. aeruginosa CS-2 in E scherichia coli BL21 (DE3) resulted in the formation of a soluble lipase. The recombinant lipase and foldase were purified to homogeneity using nickel affinity chromatography and about 10.2-fold with 40.9% recovery was achieved for the purification of the recombinant lipase. The molecular masses of the lipase and the foldase were estimated to be 35.7 and 38.3 kDa in SDS-PAGE, respectively. The recombinant lipase showed stability in the presence of some organic solvents. The recombinant CS-2 lipase was immobilized and subsequently used for the synthesis of butyl acetate in heptane. The conversion of substrate decreased from 98.2% to 87.4% after 5 cycles in reuse of the immobilized lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  2. Ghanem, A., & Aboul-Enein, H. Y. (2005). Chirality, 17, 1–15.

    Article  CAS  Google Scholar 

  3. Houde, A., Kademi, A., & Leblanc, D. (2004). Applied Biochemistry and Biotechnology, 118, 155–170.

    Article  CAS  Google Scholar 

  4. Theil, F. (1995). Chemical Reviews, 95, 2203–2227.

    Article  CAS  Google Scholar 

  5. Ogino, H., Miyamoto, K., & Ishikawa, H. (1994). Applied and Environmental Microbiology, 60, 3884–3886.

    CAS  Google Scholar 

  6. Hun, C. J., Rahaman, R. N. Z. R. A., & Salleh, A. B. (2003). Biochemical Engineering Journal, 35, 147–157.

    Article  Google Scholar 

  7. Rahaman, R. N. Z. R. A., Baharum, S. N., & Salleh, A. B. (2006). The Journal of Microbiology, 44, 583–590.

    Google Scholar 

  8. Zhao, L. L., Xu, J. H., Zhao, J., Pan, J., & Wang, Z. L. (2008). Process Biochemistry, 43, 626–633.

    Article  CAS  Google Scholar 

  9. Ruchi, G., Anshu, G., & Khare, S. K. (2008). Process Biochemistry, 43, 1040–1046.

    Article  Google Scholar 

  10. Dandavate, V., Jinjala, J., Keharia, H., & Madamwar, D. (2009). Bioresource Technology, 100, 3374–3381.

    Article  CAS  Google Scholar 

  11. Ogino, H., Hiroshima, S., Hirose, S., Yasuda, M., Ishimi, K., & Ishikawa, H. (2004). Molecular Genetics and Genomics, 271, 189–196.

    Article  CAS  Google Scholar 

  12. Ogino, H., Mimitsuka, T., Muto, T., Matsumura, M., Yasuda, M., Ishimi, K., et al. (2004). Journal of Molecular Microbiology and Biotechnology, 7, 212–223.

    Article  CAS  Google Scholar 

  13. Ogino, H., Katou, Y., Akagi, R., Mimitsuka, T., Hiroshima, S., Gemba, Y., et al. (2007). Extremophiles, 11, 809–817.

    Article  CAS  Google Scholar 

  14. Rahaman, R. N. Z. R. A., Chin, J. H., & Salleh, A. B. (2003). Molecular Genetics and Genomics, 269, 252–260.

    Google Scholar 

  15. Long, Z. D., Xu, J. H., Zhao, L. L., Pan, J., Yang, S., & Hua, L. (2007). Journal of Molecular Catalysis B Enzymatic, 47, 105–110.

    Article  CAS  Google Scholar 

  16. Quyen, D. T., Schmidt-Dannert, C., & Schmid, R. D. (1999). Applied and Environmental Microbiology, 65, 787–794.

    CAS  Google Scholar 

  17. Rosenau, F., & Jaeger, K. E. (2000). Biochimie, 82, 1023–1032.

    Article  CAS  Google Scholar 

  18. Zhang, A. J., Gao, R. J., Diao, N. B., Xie, G. Q., Gao, G., & Cao, S. G. (2009). Journal of Molecular Catalysis B Enzymatic, 56, 78–84.

    Article  CAS  Google Scholar 

  19. Madan, B., & Mishra, P. (2010). Applied Microbiology and Biotechnology, 85, 597–604.

    Article  CAS  Google Scholar 

  20. Park, Y. C., Shaffer, C. E., & Bennett, G. N. (2009). Applied Microbiology and Biotechnology, 85, 13–25.

    Article  CAS  Google Scholar 

  21. Salah, R. B., Ghamghui, H., Miled, N., Mejdoub, H., & Youssef, G. (2007). Journal of Bioscience and Bioengineering, 103, 368–372.

    Article  Google Scholar 

  22. Laemmli, U. K. (1970). Nature, 228, 680–685.

    Article  Google Scholar 

  23. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Leitgeb, M., & Knez, Ž. (1990). Journal of the American Oil Chemists’ Society, 67, 775–778.

    Article  CAS  Google Scholar 

  25. Peng, R., Lin, J., & Wei, D. (2010). Applied Biochemistry and Biotechnology, 162, 733–743.

    Article  CAS  Google Scholar 

  26. Nagao, T., Shimada, Y., Sugihara, A., & Tominaga, Y. (1998). Journal of Biochemistry, 124, 1124–1129.

    CAS  Google Scholar 

  27. Kohno, M., Enatsu, M., Funatsu, J., Yoshiizumi, M., & Kugimiya, W. (2001). Journal of Biotechnology, 87, 203–210.

    Article  CAS  Google Scholar 

  28. Yomo, T., Urabe, I., & Okada, H. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 3780–3784.

    Article  CAS  Google Scholar 

  29. Monnerjahn, C., Techel, D., Mohamed, S. A., & Rensing, L. A. (2000). FEMS Microbiology Letters, 183, 307–312.

    Article  CAS  Google Scholar 

  30. Keiler, K. C., Shapiro, L., & Williams, K. P. (2002). Proceedings of the National Academy of Sciences of the United States of America, 97, 7778–7783.

    Article  Google Scholar 

  31. Akrim, M., Bally, M., Ball, G., Tommassen, J., Teerink, H., Filloux, A., et al. (1993). Molecular Microbiology, 10, 431–443.

    Article  CAS  Google Scholar 

  32. Luo, Y., Zheng, Y., Jiang, Z., Ma, Y., & Wei, D. (2006). Applied Microbiology and Biotechnology, 73, 349–355.

    Article  CAS  Google Scholar 

  33. Traub, P. C., Schmidt-Dannert, C., Schmitt, J., & Schmid, R. D. (2001). Applied Microbiology and Biotechnology, 55, 198–204.

    Article  CAS  Google Scholar 

  34. Verma, M. L., Azmi, W., & Kanwar, S. S. (2009). Acta Microbiologica et Immunologica Hungarica, 56, 229–242.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Ministry of Science and Technology of the People’s Republic of China is gratefully acknowledged (project IDs: 2006AA020203 and 2009CB724703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren Peng or Dongzhi Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, R., Lin, J. & Wei, D. Co-Expression of an Organic Solvent-Tolerant Lipase and its Cognate Foldase of Pseudomonas aeruginosa CS-2 and the Application of the Immobilized Recombinant Lipase. Appl Biochem Biotechnol 165, 926–937 (2011). https://doi.org/10.1007/s12010-011-9309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9309-9

Keywords

Navigation