Skip to main content
Log in

Agrobacterium-Mediated Gene Transfer in Plants and Biosafety Considerations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Agrobacterium, the natures’ genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world’s population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mohammed, A., & Abalaka, M. E. (2011). Agrobacterium transformation: a boost to agricultural biotechnology. Journal of Medical Genetics and Genomics, 3(8), 126–130.

    CAS  Google Scholar 

  2. Smith, E. F., & Towsend, C. O. (1907). A plant tumor of bacterial origin. Science, 25, 671–673.

    Article  CAS  Google Scholar 

  3. Binns, A. N., & Thomashow, M. F. (1988). Cell biology of Agrobacterium infection and transformation of plants. Annual Review of Microbiology, 42, 575–606.

    Article  CAS  Google Scholar 

  4. Zupan, J. R., & Zambryski, P. (1995). Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiology, 107(4), 1041–1047.

    Article  CAS  Google Scholar 

  5. Chilton, M. D., Tepfer, D. A., Petit, A., David, C., Delbart, F. C., & Tempe, J. (1982). Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature, 295(5848), 432–434.

    Article  CAS  Google Scholar 

  6. Tzfira, T., Li, J., Lacroix, B., & Citovsky, V. (2004). Agrobacterium T-DNA integration: molecules and models. Trends in Genetics, 20(8).

  7. Simoh, S., Linthorst, H. J. M., & Verpoorte, R. (2007). Host-bacterium interactions in Agrobacterium tumefaciens-mediated plant transformation: mechanism of action and Agrobacterium/plant factors involved. Current Topics in Plant Biology, 8, 1–20.

    CAS  Google Scholar 

  8. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., & Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. PNAS USA, 98, 1871–1876.

    Article  CAS  Google Scholar 

  9. Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: the biology behind the ‘gene-jockeying’ tool. Microbiology and Molecular Biology Reviews, 67(1), 16–37.

    Article  CAS  Google Scholar 

  10. Sood, P., Bhattacharya, A., & Sood, A. (2011). Problems and possibilities of monocot transformation. Biologia Plantarum, 55, 1–15.

    Article  CAS  Google Scholar 

  11. Statchel, S. E., Messens, E., Montagu, M. V., & Zambryski, P. (1985). Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318, 624–629.

    Article  Google Scholar 

  12. Stachel, S. E., Nester, E. W., & Zambryski, P. C. (1986). A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proceedings of the National Academy of Science USA, 83, 379–383.

    Article  CAS  Google Scholar 

  13. Douglas, C. J., Staneloni, R. J., Rubin, R. A., & Nester, E. W. (1985). Identification and genetic analysis of an Agrobacterium tumefaciens chromsomal virulence region. Journal of Bacteriology, 161, 850–860.

    CAS  Google Scholar 

  14. Thomashow, M. F., Karlinsey, J. E., Marks, J. R., & Hurlbert, R. E. (1987). Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. Journal of Bacteriology, 169, 3209–3216.

    CAS  Google Scholar 

  15. White, F. F., & Nester, E. W. (1980). Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. Journal of Bacteriology, 144, 710–720.

    CAS  Google Scholar 

  16. Hooykaas, P. J. J., Hofker, M., den Dulk-Ras, H., & Schilperoort, R. A. (1984). A comparison of virulence determinants in an octopine Ti-plasmids and Ri-plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid, 11, 195–205.

    Article  CAS  Google Scholar 

  17. Sinkar, V. P., White, F. F., & Gordon, M. P. (1987). Molecular biology of Ri-plasmid—a review. Biosciences, 11, 47–57.

    Article  CAS  Google Scholar 

  18. Sheng, J., & Citovsky, V. (1996). Agrobacterium–plant cell interaction: have virulence proteins, will travel. The Plant Cell, 8, 1699–1710.

    CAS  Google Scholar 

  19. Gelvin, S. B. (2010). Plant proteins involved in Agrobacterium-mediated genetic transformation. Annual Review of Phytopathological, 48, 45–684.

    Article  CAS  Google Scholar 

  20. Magori, S., & Citovsky, V. (2011). Epigenetic control of Agrobacterium T-DNA integration. Biochimica et Biophysica Acta, 1809, 388–394.

    Article  CAS  Google Scholar 

  21. Tenea, G. N. (2012). Host chromatin proteins towards increasing susceptibility to Agrobacterium-mediated genetic transformation. Romanian Biotechnological Letters, 17(3).

  22. Mohammad, A. M., & Bagherieh-Najjar, M. (2009). Agrobacterium-mediated transformation of plants: basic principles and influencing factor. African Journal Biotechnology, 8(20), 5142–5148.

    Google Scholar 

  23. Kavitah, G., Taghipour, F., & Huyop, F. (2010). Investigation of factors in optimizing Agrobacterium medium gene transfer in Citrullus lanatus cv round dragon. Journal of Biological Sciences, 10(3), 209–216.

    Article  Google Scholar 

  24. Ivarson, E. (2011). Factors affecting Agrobacterium transformation in oat. Degree Project for MSc Thesis in Horticulture

  25. Guo, M., Zhang, Y. L., Meng, Z. J., & Jiang, J. (2012). Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genetics and Molecular Research, 11(1), 661–671.

    Article  CAS  Google Scholar 

  26. Bajestani, M. J., Khodai-Kalaki, M., Motamed, N., & Noorayin, O. (2011). Genetic transformation of olive somatic embryos through Agrobacterium tumefaciens and regeneration of transgenic plants. African Journal of Biotechnology, 1028, 5468–5475.

    Google Scholar 

  27. Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D., & Lorez, H. (2006). Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal, 4, 251–261.

    Article  CAS  Google Scholar 

  28. Olhoft, P. M., & Somers, D. A. (2001). l-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports, 20, 706–711.

    Article  CAS  Google Scholar 

  29. Olhoft, P. M., Lin, K., Galbraith, J., Nielsen, N., & Somers, D. A. (2001). The role ofthiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Reports, 20, 731–737.

    Article  CAS  Google Scholar 

  30. Enríquez-Obregón, G. A., Vazquez-Padron, R. I., Prieto-Samsonov, D. L., De la Riva, G. A., & Selman-Housein, G. (1998). Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta, 206, 20–27.

    Article  Google Scholar 

  31. Enriquez-Obregon, G. A., Prieto-Samsonov, D. L., de la Riva, G. A., Perez, M. I., Selman-Housein, G., & Vazquz-Padron, R. I. (1999). Agrobacterium-mediated Japonica rice transformation a procedure assisted by an antinecrotic treatment. Plant Cell Tissue Organs Cultures, 59, 159–168l.

    Article  CAS  Google Scholar 

  32. Armstrong, C. L., & Rout J. R. (2001). A novel Agrobacterium-mediated plant transformation method. Int. Patent Publ. WOO1/09302 A2.

  33. Zhao, Z. Y., Gu, W., Cai, T., Tagliani, L., Hondred, D., Bond, D., Schroeder, S., Rudert, M., & Pierce, D. (2001). High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Molecular Breeding, 8, 323–333.

    Article  CAS  Google Scholar 

  34. Cheng, M., Hu, T., Layton, J. I., Liu, C. N., & Fry, J. E. (2003). Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Developmental Biology Plant, 39, 595–604.

    Article  CAS  Google Scholar 

  35. Salas, M. C., Park, S. H., Srivatanakul, M., & Smith, R. H. (2001). Temperature influence on stable T-DNA integration in plant cells. Plant Cell Reports, 20, 701–705.

    Article  CAS  Google Scholar 

  36. Ribas, A. F., Dechamp, E., Champion, A., Bertrand, B., Combes, M. C., Verdeil, J. L., Lapeyre, F., Lashermes, P., & Etienne, H. (2011). Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biology, 11, 92–107.

    Article  CAS  Google Scholar 

  37. Su, G., Park, S., Lee, S., & Murai, N. (2012). Low co-cultivation temperature at 20 °C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after Agrobacterium tumefaciens-mediated transformation of tobacco leaf disks. America Journal of Plant Science, 3, 537–545.

    Article  CAS  Google Scholar 

  38. Hashizume, F., Tsuchiya, T., Ugaki, M., Niwa, Y., Tachibana, N., & Kowyama, Y. (1999). Efficient Agrobacterium-mediated transformation and the usefulness of a synthetic GFP reporter gene in leading varieties of japonical rice. Plant Biotechnology, 16, 397–401.

    Article  CAS  Google Scholar 

  39. Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C. M., Duncan, D. R., Conner, T. W., & Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology, 115(3), 971–980.

    CAS  Google Scholar 

  40. Ye, G. N., Stone, D., Pang, S. Z., Creely, W., Gonzalez, K., & Hinchee, M. (1999). Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. The Plant Journal, 19, 249–257.

    Article  Google Scholar 

  41. Bechtold, N., Jaudeau, B., Jolivet, S., Maba, B., Vezon, D., Voisin, R., & Pelletier, G. (2000). The maternal chromosome set is the target of T-DNA in planta transformation of Arabidopsis thaliana. Genetics, 155, 1875–1887.

    CAS  Google Scholar 

  42. Desfeux, C., Clough, S. J., & Bent, A. F. (2000). Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiology, 123, 859–904l.

    Article  Google Scholar 

  43. Cheng, M. I., Jarret, R. L. I., Li, Z. I., Xing, A. I., & Demski, J. W. (1996). Production of fertile transgenic peanut (Arachis hypogea L.) plants using Agrobacterium tumefaciens. Plant Cell Reports, 15, 653–657.

    Article  CAS  Google Scholar 

  44. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., & Kumashiro, T. (1996). High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 14, 745–750.

    Article  CAS  Google Scholar 

  45. Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Peschke, V., & Gilbertson, L. (2003). Cre/lox mediated gene excision in transgenic maize (Zea mays L.) plants. Theoretical and Applied Genetics, 107, 1157–1168.

    Article  CAS  Google Scholar 

  46. Thu, T. T., Mai, T. T. X., Deade, E., Farsi, S., Tadesse, Y., Angenum, G., & Jacobs, M. (2003). In vitro regeneration and transformation of pigeonpea (Cajanus cajan L. Mills P). Molecular Breeding, 11, 159–168.

    Article  CAS  Google Scholar 

  47. Opabode, J. (2006). Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnology and Molecular Biology Reviews, 1(1), 12–20.

    Google Scholar 

  48. Conrad, U., & Friedler, U. (1994). Expression of engineered antibodies in plant cells. Plant Molecular Biology, 26, 1023–1030.

    Article  CAS  Google Scholar 

  49. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23, 718–723.

    Article  CAS  Google Scholar 

  50. Tzfira, T., Zuker, A., & Altman, A. (1998). Forest-tree biotechnology: genetic transformation and its application to future forests. Trends in Biotechnology, 16, 439–446.

    Article  CAS  Google Scholar 

  51. Thakur, A. K., Saraswat, A., & Srivastava, D. K. (2011). In vitro plant regeneration through direct organogenesis in Populus deltoides clone G48 from petiole explants. Journal of Plant Biochemistry and Biotechnology. doi:10.1007/s13562-011-0067-0.

  52. Blanc, G., Baptiste, C., Oliver, G., Martin, F., & Montoro, P. (2006). Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Müll Arg. plants. Plant Cell Reports, 24(12), 724–73.

    Article  CAS  Google Scholar 

  53. Zombori, Z., Szécsényi, M., & Györgyey, J. (2011). Different approaches for Agrobacterium-mediated genetic transformation of Brachypodium distachyon, a new model plant for temperate grasses. Acta Biologica Szegediensis, 55(1), 193–195.

    Google Scholar 

  54. Wang, C. K., Hsu, S. Y., Chen, P.-Y., & To, K.-Y. (2012). Transformation and characterization of transgenic Bidens pilosa L. Plant Cell, Tissue Organization Culture, 109, 457–464.

    Article  CAS  Google Scholar 

  55. Alpizar, E., Dechamp, E., Lapeyre-Montes, F., Guilhaumon, C., Bertrand, B., Jourdan, C., Lashermes, P., & Etienne, H. (2008). Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Annals of Botany, 101(7), 929–40.

    Article  CAS  Google Scholar 

  56. Giddings, G., Allison, G., Brooks, D., & Carter, A. (2000). Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology, 18, 1151–1155.

    Article  CAS  Google Scholar 

  57. Haq, T. A., Mason, H. S., Clements, J. D., & Arntzen, C. J. (1995). Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science, 268, 714–716.

    Article  CAS  Google Scholar 

  58. Mason, H. S., Haq, T. A., Clements, J. D., & Arntzen, C. J. (1998). Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine, 16, 1336–1343.

    Article  CAS  Google Scholar 

  59. Tacket, C. O., Mason, H. S., Losonsky, G., Estes, M. K., Levine, M. M., & Arntzen, C. J. (2000). Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. The Journal of Infectious Diseases, 182, 302–305.

    Article  CAS  Google Scholar 

  60. Richter, L. J., Thanavala, Y., Arntzen, C. J., & Mason, H. S. (2000). Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nature Biotechnology, 18, 1167–1171.

    Article  CAS  Google Scholar 

  61. Kong, Q., Richter, L., Yang, Y. F., Arntzen, C. J., Mason, H. S., & Thanavala, Y. (2001). Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proceedings of the National Academy of Sciences USA, 98, 11539–11544.

    Article  CAS  Google Scholar 

  62. Dus Santos, M. J., Carrillo, C., Ardila, F., Ríos, R. D., Franzone, P., Piccone, M. E., Wigdorovitz, A., & Borca, M. V. (2005). Development of transgenic alfalfa plants containing the foot and mouth disease virus structural polyprotein gene P1 and its utilization as an experimental immunogen. Vaccine, 23, 1838–1843.

    Article  CAS  Google Scholar 

  63. Cherian, S., & Oliveira, M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental Science and Technology, 39, 9377–9390.

    Article  CAS  Google Scholar 

  64. Gratão, P. L., Prasad, M. N. V., Cardoso, P. F., Lea, P. J., & Azevedo, R. A. (2005). Phytoremediation: green technology for the clean up of toxic metals in the environment. Brazilian Journal Plant Physiology, 17, 53–64.

    Google Scholar 

  65. Bizily, S. P., Rugh, C. L., Summers, A. O., & Meagher, R. B. (1999). Phytoremediation of me-thylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proceedings of the National Academy of Sciences USA, 96, 6808–6813.

    Article  CAS  Google Scholar 

  66. Bizily, S. P., Rugh, C. L., & Meagher, R. B. (2000). Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnology, 18, 213–217.

    Article  CAS  Google Scholar 

  67. Pilon-Smits, E. A., Hwang, S., Lytle, C. M., Zhu, Y., Tai, J. C., Bravo, R. C., Chen, Y., Leustek, T., & Terry, N. (1999). Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiology, 119, 123–132.

    Article  CAS  Google Scholar 

  68. Hannink, N., Rosser, S. J., French, C. E., Basran, A., Murray, J. A., Nicklin, S., & Bruce, N. C. (2001). Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotechnology, 19, 1168–1172.

    Article  CAS  Google Scholar 

  69. Dhankher, O. P., Li, Y., Rosen, B. P., Shi, J., Salt, D., Senecoff, J. F., Sashti, N. A., & Meagher, R. B. (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nature Biotechnology, 20, 1140–1145.

    Article  CAS  Google Scholar 

  70. Ellis, D. R., Sors, T. G., Brunk, D. G., Albrecht, C., Orser, C., Lahner, B., Wood, K. V., Harris, H. H., Pickering, I. J., & Salt, D. E. (2004). Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biology, 4, 1–11.

    Article  Google Scholar 

  71. Song, W. Y., Sohn, E. J., Martinoia, E., Lee, Y. J., Yang, Y. Y., Jasinski, M., Forestier, C., Hwang, I., & Lee, Y. (2003). Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnology, 21, 914–919.

    Article  CAS  Google Scholar 

  72. Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H., & Matsuoka, M. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.

    Article  CAS  Google Scholar 

  73. Oeller, P. W., Min-Wong, L., Taylor, L. P., Pike, D. A., & Theologis, A. (1991). Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254, 437–439.

    Article  CAS  Google Scholar 

  74. Mehta, R. A., Cassol, T., Li, N., Ali, N., Handa, A. K., & Mattoo, A. K. (2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotechnology, 20, 613–618.

    Article  CAS  Google Scholar 

  75. Miyagawa, Y., Tamoi, M., & Shigeoka, S. (2001). Overexpression of a cyanobacterial fructose-1, 6-/sedoheptulose-1, 7-bisphosphatase in tobacco enhances photo- synthesis and growth. Nature Biotechnology, 19, 965–969.

    Article  CAS  Google Scholar 

  76. Hirsch, R. E., & Sussman, M. R. (1999). Improving nutrient capture from soil by the genetic manipulation of crop plants. Trends in Biotechnology, 17, 356–361.

    Article  CAS  Google Scholar 

  77. Takahashi, M., Nakanishi, H., Kawasaki, S., Nishizawa, N. K., & Mori, S. (2001). Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnology, 19, 466–469.

    Article  CAS  Google Scholar 

  78. De la Fuente, J. M., Ramìrez-Rodrìguez, V., Cabrera-Ponce, J. L., & Herrera-Estrella, L. (1997). Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 276, 1566–1568.

    Article  Google Scholar 

  79. Biswas, G. C., Nasiruddin, K. M., Haque, M. S., Hoque, M., & Hoque, A. (2010). Agrobacterium-mediated gene transfer in potato for abiotic stress tolerance. Journal Sustainability Crop Production, 5(3), 1–7.

    Google Scholar 

  80. Kakkar, A., & Verma, V. K. (2011). Agrobacterium mediated biotransformation. J Appl Pharma Sciences, 01(07), 29–35.

    Google Scholar 

  81. Mehrotra, M., Singh, A. K., Sanyal, I., Altosaar, I., & Amla, D. V. (2011). Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica, 182, 87–102.

    Article  CAS  Google Scholar 

  82. Shantha, S. L., Padma, M., Bhat, S. G., Sunil Kumar, C., & Rao, R. B. (2012). Genetic manipulation of tomato (Lycopersicon esculentum) using wga gene through Agrobacterium mediated transformation. Kathmandu University Journal Science Engineering Technology, 8(1), 36–43.

    Google Scholar 

  83. Wang, Y., Xue, Y., & Li, J. (2005). Towards molecular breeding and improvement of rice in China. Trends in Plant Science, 10, 610–614.

    Article  CAS  Google Scholar 

  84. Gao, A. G., Hakimi, S. M., Mittanck, C. A., Wu, Y., Woerner, B. M., Stark, D. M., Shah, D. M., Liang, J., & Rommens, C. M. (2000). Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18, 1307–1310.

    Article  CAS  Google Scholar 

  85. Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2000). Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnology, 18, 1162–1166.

    Article  CAS  Google Scholar 

  86. Peschen, D., Li, H. P., Fischer, R., Kreuzaler, F., & Liao, Y. C. (2004). Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nature Biotechnology, 22, 732–738.

    Article  CAS  Google Scholar 

  87. Verberne, M. C., Verpoorte, R., Bol, J. F., Mercado-Blanco, J., & Linthorst, H. J. (2000). Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology, 18, 779–783.

    Article  CAS  Google Scholar 

  88. Strobel, G. A., & Nachmias, A. (1985). Agrobacterium rhizogenes promotes the initial growth of bare root stock almonds. Journal of General Microbiology, 131, 1245–1249.

    Google Scholar 

  89. Strobel, G. A., Nachmias, A., Satouri, S., & Hess, W. (1985). Improvements in the growth and yield of olive trees by traqsformation with Agrobacterium rhizogenes. Canadian Journal of Botany, 66, 2581–2585.

    Article  Google Scholar 

  90. Rinallo, C., Mittempergher, L., Frugis, G., & Mariotti, D. (1999). Clonal propagation in the genus Ulmus: improvement of rooting ability by Agrobacterium rhizogenes T-DNA genes. The Journal of Horticultural Science and Biotechnology, 74(4), 502–506.

    Google Scholar 

  91. Nottingham, S. (1998). Eat your genes: how genetically modified food is entering our diet. New York: Zed Books.

    Google Scholar 

  92. Ribas, A. F., Kobayashi, A. K., Pereira, L. F. P., & Vieira, L. G. E. (2006). Production of herbicide-resistant coffee plants (Coffea canephora P.) via Agrobacterium tumefaciens mediated transformation. Brazilian Archives of Biology and Technology, 49(1), 11–19.

    Article  Google Scholar 

  93. Jube, S., & Borthakur, D. (2009). Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell, Tissue and Organ Culture, 96(3), 325–333.

    Article  Google Scholar 

  94. Masahiro, M. I. I. Abstract of the 2012 CU-KSU-MUSC Joint Seminar in Science & Technology 15 March 2012

  95. Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., Beuckeleer, D. M., Dean, C., Zabeau, M., Van Montagu, M., & Leemans, J. (1987). Transgenic plants protected from insect attack. Nature, 328, 33–37.

    Article  CAS  Google Scholar 

  96. Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F., & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, 330, 160–163.

    Article  CAS  Google Scholar 

  97. Shelton, A. M., Zhao, J. Z., & Roush, R. T. (2002). Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annual Review of Entomology, 47, 845–881.

    Article  CAS  Google Scholar 

  98. Huang, J., Pray, C., & Rozelle, S. (2002). Enhancing the crops to feed the poor. Nature, 418, 678–684.

    Article  CAS  Google Scholar 

  99. Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., Wright, S. Y., Hinchliffe, E., Adams, J. L., Silverstone, A. L., & Drake, R. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology, 23, 482–487.

    Article  CAS  Google Scholar 

  100. Tabe, L., & Higgins, T. J. V. (1998). Engineering plant protein composition for improved nutrition. Trends in Plant Science, 3, 282–286.

    Article  Google Scholar 

  101. Chakraborty, S., Chakraborty, N., & Datta, A. (2000). Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proceedings of the National Academy of Sciences, 97, 3724–3729.

    Article  CAS  Google Scholar 

  102. Regierer, B., Fernie, A. R., Springer, F., Perez, M. A., Leisse, A., Koehl, K., Willmitzer, L., Geigenberger, P., & Kossmann, J. (2002). Starch content and yield increase as a result of altering adenylate pools in transgenic plants. Nature Biotechnology, 20, 1256–1260.

    Article  CAS  Google Scholar 

  103. Van Eenennaam, A. L., Lincoln, K., Durrett, T. P., Valentin, H. E., Shewmaker, C. K., Thorne, G. M., Jiang, J., Baszis, S. R., Levering, C. K., Aasen, E. D., Hao, M., Stein, J. C., Norris, S. R., & Last, R. L. (2003). Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell, 15(12), 3007–3019.

    Article  CAS  Google Scholar 

  104. Sattler, S. E., Cheng, Z., & DellaPenna, D. (2004). From Arabidopsis to agriculture: engineering improved vitamin E content in soybean. Trends in Plant Science, 9, 365–367.

    Article  CAS  Google Scholar 

  105. Niggeweg, R., Michael, A. J., & Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology, 22, 746–754.

    Article  CAS  Google Scholar 

  106. Ziemienowicz, A., Shim, Y. S., Matsuoka, A., Eudes, F., & Kovalchuk, I. (2012). A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex. Plant Physiology, 158, 1503–1513.

    Article  CAS  Google Scholar 

  107. Li, J. F., Park, E., von Arnim, A. G., & Nebenführ, A. (2009). The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods, 5, 6.

    Article  CAS  Google Scholar 

  108. Rafat, A., Aziz, M. A., Rashid, A. A., Abdullah, S. N. A., Kamaladini, H., Sirchi, M. H. T., & Javadi, M. B. (2010). Optimization of Agrobacterium tumefaciens mediated transformation and shoot regeneration after co-cultivation of cabbage (Brassica oleracea subsp. capitata) cv. KY cross with AtHSP101 gene. Science Horticultural, 124(1), 1–8.

    Article  CAS  Google Scholar 

  109. Singh, V. V., Verma, V., Pareek, A. K., Mathur, M., Yadav, R., Goyal, P., Thakur, A. K., Singh, Y. P., Koundal, K. R., Bansal, K. C., Mishra, A. K., Kumar, A., & Kumar, S. (2010). Optimization and development of regeneration and transformation protocol in Indian mustard using lectin gene from chickpea [Cicer arietinum (L.)]. Journal of Plant Breeding and Crop Science, 1(9), 306–310.

    Google Scholar 

  110. Bhuiyan, M. S. U., Min, S. R., Jeong, W. J., Sultana, S., Choi, K. S., Lee, Y., Lim, Y. P., Song, W. Y., & Liu, J. R. (2011). An improved method for Agrobacterium-mediated genetic transformation from cotyledon explants of Brassica juncea. Plant Biotechnology, 28(1), 17–23.

    Article  CAS  Google Scholar 

  111. Mazumdar, P., Basu, A., Paul, A., Mahanta, C., & Sahoo, L. (2010). Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefacien-smediated transformation in Jatropha curcas L. South African Journal of Botany, 76, 337–344.

    Article  Google Scholar 

  112. Zong, H., Wang, S., Ouyang, C., Deng, X., Li, L., Li, J., & Chen, F. (2010). Agrobacterium-mediated transformation of Jatropha curcas young leaf explants with lateral shoot-inducing factor (LIF). International Journal of Agriculture and Biology, 12, 891–896.

    CAS  Google Scholar 

  113. Trick, H. N., & Finer, J. J. (1997). SAAT—sonication assisted Agrobacterium mediated transformation. Transgenic Research, 6, 329–336.

    Article  CAS  Google Scholar 

  114. Trieu, A. T., & Harrison, M. J. (1996). Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Reports, 16, 6–11.

    Article  CAS  Google Scholar 

  115. Ohloft, P., Flagel, L. E., Donovan, C. M., & Somers, D. A. (2003). High-frequency soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta, 216, 723–735.

    Google Scholar 

  116. Parmesha, M., Habeebulla, M., & Khan, M. (2012). A preliminary attempt for efficient genetic transformation and regeneration of legume Mucuna pruriens L. mediated by Agrobacterium tumefaciens. Turkish Journal of Biology, 36, 285–292.

    Google Scholar 

  117. Sharma, K. K., & Anjaiah, V. (2000). An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Science, 159, 7–19.

    Article  CAS  Google Scholar 

  118. Bhatnagar-Mathur, P., Anjaiah, V., Kirti, P. B., & Sharma, K. K. (2008). Agrobacterium-mediated genetic transformation of peanut. In P. B. K. Kirti (Ed.), Handbook of new technologies for genetic improvement of legumes (pp. 227–251). USA: CRC Press.

    Chapter  Google Scholar 

  119. Trick, H. N., & Finer, J. J. (1998). Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports, 17, 482–488.

    Article  CAS  Google Scholar 

  120. Amugune, N. O., Anyango, B., & Mukiama, T. K. (2011). Agrobacterium-mediated transformation of common bean. African Crop Science Journal, 19(3), 137–147.

    Google Scholar 

  121. Sathyanarayna, R., Kumar, V., Ramesh, C. K., Parmesha, M., & Khan, M. H. M. (2012). A preliminary attempt for efficient genetic transformation and regeneration of legume Mucuna pruriens L. mediated by Agrobacterium tumefaciens. Turkish Journal of Biology, 36, 285–292.

    Google Scholar 

  122. Jensen, J. S., Marcker, K. A., Otten, L., & Schell, J. (1986). Nodule-specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatus. Nature, 321, 669–674.

    Article  CAS  Google Scholar 

  123. Bo, J., Hou, W., Wu, C., Liu, B., Liu, W., Song, S., Bi, Y., & Han, T. (2009). Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biology, 9, 78.

    Article  CAS  Google Scholar 

  124. Estrada-Navarrete, G., Alvarado-Affantranger, X., Olivares, J. E., Díaz-Camino, C., Santana, O., Murillo, E., Guillén, G., Sánchez-Guevara, N., Acosta, J., Quinto, C., Li, D., Gresshoff, P. M., & Sánchez, F. (2006). Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Molecular Plant-Microbe Interactions, 19(12), 1385–93.

    Article  CAS  Google Scholar 

  125. Graham, J., McNicol, R. J., & Kumar, A. (1995). Agrobacterium-mediated transformation of soft fruit Rubus, Ribes, and Fragaria. By: Book Title: Agrobacterium protocols series. Methods in Molecular Biology, 44, 129–133.

    CAS  Google Scholar 

  126. Huang, X. S., & Mullins, M. G. (1989). Application of biotechnology to transferring alien genes to grapevine. Hereditas, 11, 9–11.

    CAS  Google Scholar 

  127. Kose, E., & Koç, N. K. (2003). Agrobacterium mediated transformation of cucumber (Cucumis sativus L.) and plant regeneration. Biotechnology & Biotechnological Equipment, 17(2), 56–67.

    CAS  Google Scholar 

  128. Suratman, F., Huyop, F., Wagiran, A., Rahmat, Z., Ghazali, H., & Parveez, G. K. A. (2010). Cotyledon with hypocotyl segment as an explant for the production of transgenic Citrullus vulgaris schrad (watermelon) mediated by Agrobacterium tumefaciens. Biotechnology, 9(2), 106–118.

    Article  CAS  Google Scholar 

  129. Li, J., Yi, T., Qin, Y., Li, X., & Li, H. (2012). Agrobacterium-mediated transformation of watermelon (Citrullus lanatus). African Journal of Biotechnology, 11(24), 6450–6456.

    CAS  Google Scholar 

  130. Urtubia, C., Devia, J., Castro, A., Zamora, P., Aguirre, C., Tapia, E., Barba, P., Dell’Orto, P., Moynihan, M., Petri, C., Scorza, R., & Prieto, H. (2008). Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Reports. doi:10.1007/s00299-008-0559-0.

  131. Mutegi, R. W. (2012). Molecular characterization of transgenic sweet potatoes (Ipomoea batatas (L). Lam.) following genetic transformation with viral coat proteins and gus genes. http://ir-library.ku.ac.ke/etd/handle/123456789/2220.

  132. Sharma, M. K., Solanke, A. U., Jani, D., Singh, Y., & Sharma, A. K. (2009). A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. Journal of Biosciences, 34(3), 423–433.

    Article  CAS  Google Scholar 

  133. Sharma, R., Modgil, M., Sharma, P., & Saini, U. (2012). Agrobacterium-mediated transfer of chitinase gene in apple (Malus x domestica Borkh.) rootstock MM106. Indian Journal of Horticulture, 69(1), 1–6.

    Google Scholar 

  134. Venkatachalam, L., Lokesh, V., & Bhagyalakshmi, N. (2011). A rare event of Agrobacterium rhizogenes-assisted genetic transformation of ‘silk’ banana (genotype-AAB). Journal of Microbial & Biochemical Technology, 3, 009–013.

    Article  Google Scholar 

  135. Yu, H., Yang, S. H., & Goh, C. J. (2001). Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Reports, 20, 301–305.

    Article  CAS  Google Scholar 

  136. Liau, C. H., You, S. J., Prasad, V., Hsiao, H. H., Lu, J. C., Yang, N. S., & Chan, M. T. (2003). Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep, 20, 301–305.

    Google Scholar 

  137. Mishiba, K., Chin, D. P., & Mii, M. (2005). Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Reports, 24, 297–303.

    Article  CAS  Google Scholar 

  138. Julkifle, A. L., Rathinam, X., Sinniah, U. R., & Subramaniam, S. (2012). Optimization of transient green fluorescent protein (GFP) gene expression in Phalaenopsis violacea orchid mediated by Agrobacterium tumefaciens-mediated transformation system. Australian Journal of Basic and Applied Sciences, 4(8), 3424–3432.

    Google Scholar 

  139. Bunnag, S., & Pilahome, W. (2012). Agrobacterium-mediated transformation of Dendrobium chrysotoxum Lindl. African Journal of Biotechnology, 11(10), 2472–2476.

    CAS  Google Scholar 

  140. De Cleene, M., & De, L. J. (1976). The host range of crown gall. Botanical Review, 42, 389–466.

    Article  Google Scholar 

  141. Frame, B. R., Shou, H., Chikwamba, R. K., Zang, Z., Xiang, C., Fonger, T. M., Pegg, S. E. K., Li, B., Nettleton, D., Pei, D., & Wang, K. (2002). Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology, 129, 13–22.

    Article  CAS  Google Scholar 

  142. Hohn, B., Zdena, K. N., Guus, B., & Nigel, G. (1989). Agrobacterium-mediated gene transfer to monocots and dicots. Genome, 31(2), 987–993.

    Article  CAS  Google Scholar 

  143. Schlappi, M., & Hohn, B. (1992). Competence of immature maize embryos for Agrobacterium medium gene transfer. The Plant Cell, 4, 7–16.

    Google Scholar 

  144. Chan, M. T., Lee, T. M., & Chang, H. H. (1992). Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant & Cell Physiology, 33, 577–583.

    CAS  Google Scholar 

  145. Gurel, S., Gurel, E., Kaur, R., Wong, J., Meng, L., Tan, H. Q., & Lemaux, P. G. (2009). Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Reports, 28, 429–444.

    Article  CAS  Google Scholar 

  146. Harwood, W. A., Bartlett, J. G., Alves, S. C., Perry, M., Smedley, M. A., Leyland, N., & Snape, J. W. (2009). Barley transformation using Agrobacterium-mediated techniques. Methods in Molecular Biology, 478, 137–147.

    Article  CAS  Google Scholar 

  147. Raja, N. I., Bano, A., Rashid, H., Chaudhary, Z., & Ilyas, N. (2010). Protocol for integeration of XA21 gene in wheat (Triticum aestivum L.). Pakistan Journal of Botany, 42(5), 3613–3631.

    CAS  Google Scholar 

  148. Razzaq, A., Ma, Z., & Wang, H. (2010). Genetic transformation of wheat (Triticum aestivrazzaqum L): a review. Triticeae Genomics and Genetics, 1(2).

  149. Chan, M. T., Chang, H. H., Ho, S. L., Tong, W. F., & Yu, S. M. (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha amylase promoter/β-glucuronidase gene. Plant Molecular Biology, 22, 491–496.

    Article  CAS  Google Scholar 

  150. Zhao, Z. Y., Cail, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., & Pierce, D. (2000). Agrobacterium-mediated sorghum transformation. Plant Molecular Biology, 44, 789–798.

    Article  CAS  Google Scholar 

  151. Ozawa, K., & Takaiwa, F. (2010). Highly efficient Agrobacterium-mediated transformation of suspension-cultured cell clusters of rice (Oryza sativa L.). Plant Science, 179, 333–337.

    Article  CAS  Google Scholar 

  152. Ozawa, K., Wakasa, Y., Ogo, Y., Matsuo, K., Kawahigashi, H., & Takaiwa, F. (2012). Development of an efficient Agrobacterium-mediated gene targeting system for rice and analysis of rice knockouts lacking granule-bound starch synthase (waxy) and β1, 2-xylosyltransferase. Plant & Cell Physiology, 53(4), 755–61.

    Article  CAS  Google Scholar 

  153. Sarangi, S., Ghosh, J., Bora, A., Das, S., & Mandal, A. B. (2011). Agrobacterium-mediated genetic transformation of indica rice varieties involving Am-SOD gene. Indian Journal of Biotechnology, 10, 9–18.

    CAS  Google Scholar 

  154. Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J., & Kumlehn, J. (2009). Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. International Journal of Plant Genomics. doi:10.1155/2009/835608.

  155. Liu, Y., Yu, J., Ao, G., & Zhao, Q. (2007). Factors influencing Agrobacterium-mediated transformation of foxtail millet (Setaria italica). Chinese Journal of Biochemistry and Molecular Biology, 23(7), 531–536.

    CAS  Google Scholar 

  156. Wang, M. Z., Pan, Y. L., Li, C., Liu, C., Zhao, Q., Ao, G.-M., & Yu, J. J. (2011). Agrobacterium-mediated transformation of foxtail millet (Setaria italica). African Journal of Biotechnology, 10(73), 16466–16479.

    CAS  Google Scholar 

  157. Li, J., Tan, X., Zhu, F., & Guo, J. (2010). A rapid and simple method for Brassica napus floral-dip transformation and selection of transgenic plantlets. International Journal of Biology, 2(1), 127–131.

    CAS  Google Scholar 

  158. Li, R., & Rongda, Q. (2011). High throughput Agrobacterium-mediated switch grass transformation. Biomass and Bioenergy, 35(3), 1046–1054.

    Article  CAS  Google Scholar 

  159. Sharma, M., Kothari-Chajer, A., Jagga-Chugh, S., & Kothari, S. (2011). Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.). Gaertn Plant Cell, Tissue and Organ Culture, 105(1), 93–104.

    Article  CAS  Google Scholar 

  160. Jha, P., Shashi, Rustagi, A., Agnihotri, P. K., Kulkarni, V. M., & Bhat, V. (2011). Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tissue Organ Cult, 107(3), 501–512.

    Article  CAS  Google Scholar 

  161. Ignacimuthu, S., & Ceasar, S. A. (2012). Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. Journal of Biosciences, 37(1), 135–147.

    Article  CAS  Google Scholar 

  162. Feldmann, K. A., & Marks, M. D. (1987). Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Molecular and General Genetics, 208, 1–9.

    Article  CAS  Google Scholar 

  163. Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16(6), 735–743.

    Article  CAS  Google Scholar 

  164. Chang, S. S., Park, S. K., Kim, B. C., Kang, B. J., Kim, D. U., & Nam, H. G. (1994). Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. The Plant Journal, 5, 551–558.

    Article  CAS  Google Scholar 

  165. Katavic, V., Haughman, G. W., Reed, D., Martin, M., & Kunst, L. (1994). In plant transformation of Arabidopsis thaliana. Molecular and General Genetics, 245, 363–370.

    Article  CAS  Google Scholar 

  166. Bechtold, N., Ellis, J., & Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Comptes Rendus De l’Académie des sciences Serie III, 316, 1194–1199.

    CAS  Google Scholar 

  167. Bechtold, N., & Pelletier, G. (1998). In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration in Arabidopsis. In J. M. Martinez-Zapater & J. Salinas (Eds.), Protocols (pp. 259–266). Totowa, NJ: Humana Press.

    Google Scholar 

  168. Lu, C., & Kang, J. (2008). Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Reports, 27, 273–278.

    Article  CAS  Google Scholar 

  169. Trieu, A. T., Burleigh, S. H., Kardailsky, I. V., Maldonado-Mendoza, I. E., Versaw, W. K., Blaylock, L. A., Shin, H., Chiou, T. J., Katagi, H., Dewbre, G. R., Weigel, D., & Harrison, M. J. (2000). Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. The Plant Journal, 22(6), 531–41.

    Article  CAS  Google Scholar 

  170. Weeks, J. T., Ye, J., & Rommens, C. M. (2008). Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Research, 17(4), 587–97.

    Article  CAS  Google Scholar 

  171. Chee, P. P., Fober, A. K., & Slightom, L. J. (1989). Transformation of soybean (Glycine max (L.) Merrill) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiology, 91, 1212–1218.

    Article  CAS  Google Scholar 

  172. Ping, L. X., Nogawa, M., Nozue, M., Makita, M., Takeda, M., Bao, L., & Kojima, M. (2003). In planta transformation of mulberry trees (Morus alba L.) by Agrobactetium tumefaciens. Journal Insect Biotechnology Sericol, 72, 177–184.

    Google Scholar 

  173. Supartana, P., Shimizu, T., Shioiri, H., Nogawa, M., Nozue, M., & Kojima, M. (2005). Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 100(4), 391–397.

    Article  CAS  Google Scholar 

  174. Keshamma, E., Rohini, S., Rao, K. S., Madhusudhan, B., & Kumar, M. U. (2008). Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). Journal of Cotton Science, 12, 264–272.

    CAS  Google Scholar 

  175. Rohini, V. K., & Rao, K. S. (2008). A novel in planta approach to gene transfer for legumes Chapter 18 In: Kirti, P. B. (ed) Handbook of new technologies for genetic improvement of legumes. CRC: New York. pp 273–286.

  176. Rao, S. K., & Rohini, V. K. (1999a). Gene transfer into Indian cultivars of safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens. Plant Biotechnol, 16, 201–206.

    Article  CAS  Google Scholar 

  177. Rao, S. K., & Rohini, V. K. (1999b). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): a simple protocol. Annals of Botany, 83, 347–354.

    Article  CAS  Google Scholar 

  178. Rohini, V. K., & Rao, S. K. (2000a). Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Science, 150, 41–49.

    Article  CAS  Google Scholar 

  179. Rohini, V. K., & Rao, S. K. (2000b). Embryo transformation,a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Annals of Botany, 86, 1043–1049.

    Article  CAS  Google Scholar 

  180. Rohini, V. K., & Rao, S. K. (2001). Transformation ofpeanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Science, 160(5), 883–892.

    Article  Google Scholar 

  181. Wang, W. C., Menon, G., & Hansen, G. (2003). Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Reports, 22, 274–281.

    Article  CAS  Google Scholar 

  182. Curtis, I. S. (2003). The noble radish: past, present and future. Trends in Plant Science, 8, 305–307.

    Article  CAS  Google Scholar 

  183. Chumakov, M. I., Rozhok, N. A., Velikov, V. A., Tyrnov, V. S., & Volokhina, I. V. (2006). In planta transformation of maize through inoculation of Agrobacterium into the silks. Genetika, 42(8), 1083–1088.

    CAS  Google Scholar 

  184. Chumakov, M. I., Rozhok, N. A., Velikov, V. A., Tyrnov, V. S., & Volokhina, I. V. (2006). Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russian Journal of Genetics, 42(8), 893–897.

    Article  CAS  Google Scholar 

  185. Mamontova, E. M., Velikov, V. A., Volokhina, I. V., & Chumakov, M. I. (2010). Agrobacterium-mediated in planta transformation of maize germ cells. Russian Journal of Genetics, 46(4), 501–504.

    Article  CAS  Google Scholar 

  186. Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakijima, T., Haramoto, N., Nozue, M., & Kojima, M. (2006). Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 102(3), 162–170.

    Article  CAS  Google Scholar 

  187. Razzaq, A., Hafiz, I. A., Mahmood, I., & Hussain, A. (2011). Development of in planta transformation protocol for wheat. African Journal of Biotechnology, 10(5), 740–750.

    CAS  Google Scholar 

  188. Naseri, G., Sohani, M. M., Pourmassalehgou, A., & Allahi, S. (2012). In planta transformation of rice (Oryza sativa) using thaumatin-like protein gene for enhancing resistance to sheath blight. African Journal Biotechnology, 11(31), 7885–7893.

    CAS  Google Scholar 

  189. Zhang, T., & Chen, T. (2012). Cotton pistil drip transformation method. Methods in Molecular Biology, 847, 237–43.

    Article  CAS  Google Scholar 

  190. Kohli, A., Twyman, R. M., Abranches, R., Wegel, E., Stoger, E., & Christou, P. (2003). Transgene integration, organization and interaction in plants. Plant Molecular Biology, 52(2), 247–258.

    Article  CAS  Google Scholar 

  191. Quan, C. Z., Qi, H. X., & Wu, R. (2001). Comparison of biolistic and Agrobacterium mediated transformation methods on transgene copy number and rearrangement frequency in rice. Acta Botanica Sinica, 43(8), 826–833.

    Google Scholar 

  192. Oltmanns, H., Frame, B., Lee, L. Y., Johnson, S., Li, B., Wang, K., et al. (2010). Generation of backbone free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiology, 152, 1158–66.

    Article  CAS  Google Scholar 

  193. Kononov, M. E., Bassuner, B., & Gelvin, S. B. (1997). Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. The Plant Journal, 11(5), 945–957.

    Article  CAS  Google Scholar 

  194. Wenck, A., Czako, M., Kanevski, I., & Marton, L. (1997). Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Molecular Biology, 34, 913–922.

    Article  CAS  Google Scholar 

  195. De Buck, S., de Wilde, C., Montagu, M. V., & Depicker, A. (2000). T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Molecular Breeding, 6, 459–468.

    Article  Google Scholar 

  196. Kuraya, Y., Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, J., Imaseki, H., & Komari, T. (2004). Suppression of transfer of non-T-DNA “vector backbone” sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Molecular Breeding, 14, 309–320.

    Article  Google Scholar 

  197. Matzke, M., Mette, M., & Matzke, A. (2000). Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology, 43, 401–415.

    Article  CAS  Google Scholar 

  198. Fu, X., Duc, L. T., Fontana, S., Bong, B. B., Tinjuangjun, P., Sudhakar, D., Twyman, R. M., Christou, P., & Kohli, A. (2000). Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Research, 9, 11–19.

    Article  CAS  Google Scholar 

  199. De-Vetten, N., Walters, A., Raemakers, K., Der-Meer, I. V., & Ter-Stege, R. (2003). A transformation method for obtaining marker-free plants of across-pollinating and vegetatively propagated crop. Nature Biotechnology, 21, 439–442.

    Article  CAS  Google Scholar 

  200. Dong, S. J., & Qu, R. D. (2005). High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Science, 168, 1453–1458.

    Article  CAS  Google Scholar 

  201. Ishida, Y., Hiei, Y., & Komari, T. (2007). Agrobacterium-mediated transformation of maize. Nature Protocols, 2, 1614–1621.

    Article  CAS  Google Scholar 

  202. Ajolabi, S. A. (2007). Status of clean gene (selection marker-free) technology. African Journal of Biotechnology, 6(25), 2910–2923.

    Google Scholar 

  203. Park, J. M., Lee, Y. K., Kang, B. K., & Chung, W. I. (2004). Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants. Theoretical and Applied Genetics, 109, 1562–1567.

    Article  CAS  Google Scholar 

  204. Jia, H., Liao, M., Verbelen, J. P., & Vissenberg, K. (2007). Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep, 26(11), 1961–1965.

    Article  CAS  Google Scholar 

  205. Bhatnagar, M., Prasad, K., Bhatnagar-Mathur, P., Lakshmi Narasu, M., Waliyar, F., & Sharma, K. K. (2010). An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Reports, 29, 495–502.

    Article  CAS  Google Scholar 

  206. Sripriya, R., Sangeetha, M., Parameswari, C., Veluthambi, B., & Veluthambi, K. (2011). Improved Agrobacterium-mediated co-transformation and selectable marker elimination in transgenic rice by using a high copy number pBin19-derived binary vector. Plant Science, 180(6), 766–74.

    Article  CAS  Google Scholar 

  207. Tuteja, N., Verma, S., Sahoo, R. K., & Reddy, R. S. (2012). Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. Journal of Biosciences, 37(1), 167–97.

    Article  CAS  Google Scholar 

  208. M-De, B., Schell, J., & Montagu, M. V. (1986). Chloroplast transformation by Agrobacterium tumefaciens. EMBO Journal, 4(6), 1367–1372.

    Google Scholar 

  209. Venkateswarlu, K., & Nazar, R. N. (1991). Evidence for T-DNA mediated gene targeting to tobacco chloroplasts. Biotechnology, 9, 1103–1105.

    Article  CAS  Google Scholar 

  210. Shrawat, A. K., & Lorz, H. (2006). Agrobacterium-mediated transformation of cereals: a promising approach crossing barriors. Plant Biotechnology Journal, 4(6), 575–603.

    Article  CAS  Google Scholar 

  211. Men, A. E., Khalid, M., & My Abdelmajid, A. (2001). Bacterial artificial chromosome library of Lotus japonicus constructed in an Agrobacterium tumefaciens-transformable vector. MPMI, 14(3), 422–425. Publication no. M-2001-0116-01N. © 2001 The American Phytopathological Society Research Note.

    Article  CAS  Google Scholar 

  212. Ruifeng, H., Jin, P., Lili, Z., & Guangcun, H. (2010). Agrobacterium-mediated transformation of large DNA fragments using a BIBAC vector system in rice. Plant Molecular Biology Reports, 28(4), 613–619.

    Google Scholar 

  213. Yu, K. (2012). Bacterial artificial chromosome libraries of pulse crops: characteristics and applications. Journal of Biomedicine and Biotechnology. doi:10.1155/2012/493186.

  214. Wei, L., Guangqin, G., & Guochang, Z. (2000). Agrobacterium-mediated transformation: state of the art and future prospect. Chinese Science Bulletin, 45, 1537–1546.

    Article  Google Scholar 

  215. Miller, M., Tagliani, L., Wang, N., Berka, B., Bidney, D., & Zhao, Z. Y. (2002). High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens T-DNA binary system. Transgenic Research, 11, 381–396.

    Article  CAS  Google Scholar 

  216. Breitler, J. C., Meynard, D., Boxtel, J. V., Royer, M., Bonnot, F., Cambillau, L., & Guiderdoni, E. (2004). A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Research, 13, 271–287.

    Article  CAS  Google Scholar 

  217. He, Z., Fu, Y., Si, H., Hu, G., Zhang, S., Yu, Y., & Sun, Z. (2004). Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Science, 166(1), 17–22.

    Article  CAS  Google Scholar 

  218. Luo, K., Zheng, X., Chen, Y., Xiao, Y., Zhao, D., McAvoy, R., Pei, Y., & Li, Y. (2006). The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Reports, 25(5), 403–409.

    Article  CAS  Google Scholar 

  219. Li, Z. T., Dhekney, S., Dutt, V., Aman, M., Tattersall, J., Kelley, K. T., & Gray, D. J. (2006). Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cellular & Developmental Biology-Plant, 42, 220–227.

    Article  CAS  Google Scholar 

  220. Rahman, Z. A., Seman, Z. A., Basirun, N., Julkifle, A. L., Zainal, Z., & Subramaniam, S. (2011). Preliminary investigations of Agrobacterium-mediated transformation in indica rice MR219 embryogenic callus using gusA gene. African Journal of Biotechnology, 10(40), 7805–7813.

    Google Scholar 

  221. Davey, M. R., Soneji, J. R., Rao, M. N., Kourmpetli, S., Bhattacharya, A. & Kole, C. (2012). Generation and deployment of transgeniccrop plants: an overview, chapter 1. In: C Kole, CH Michler, AG Abbott, TC Hall (eds). Transgenic crop plants, volume 1—principles and development. New York: Springer

  222. Park, S. H., Yil, N., Kim, Y. S., Jeog, M. H., Bang, S. W., Choi, Y. D., & Kim, J. K. (2010). Analysis of five novel putative constitutive gene promoters in transgenic rice plants. Journal of Experimental Botany, 61(9), 2459–2467.

    Article  CAS  Google Scholar 

  223. Pérez-Piñeiro, P., Gago, J., Landín, M., and Gallego, P. P. (2012). Agrobacterium-mediated transformation of wheat: general overview and new approaches to model and identify the key factors involved. Transgenic plants—advances and limitations chapter 1. Yelda Ozden Ciftci (ed). doi:10.5772/1409

  224. Duan, Y., Zhai, C., Li, H., Li, J., Mei, W., Gui, H., Ni, D., Song, F., Li, L., & Zhang, W. (2012). An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Plant Cell Reports, 31(9), 1611–1624.

    Article  CAS  Google Scholar 

  225. Latham, J. R., Wilson, A. K., & Steinbrecher, R. A. (2006). The mutational consequences of plant transformation. Journal of Biomedicine and Biotechnology, 25, 376.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Mehrotra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrotra, S., Goyal, V. Agrobacterium-Mediated Gene Transfer in Plants and Biosafety Considerations. Appl Biochem Biotechnol 168, 1953–1975 (2012). https://doi.org/10.1007/s12010-012-9910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9910-6

Keywords

Navigation