Skip to main content
Log in

Cloning and Characterization of a Multifunctional Promoter from Maize (Zea mays L.)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The use of tissue-specific promoters to drive the expression of target genes during certain developmental stages or in specific organs can prevent unnecessary gene expression caused by constitutive promoters. Utilizing heterologous promoters to regulate the expression of genes in transgenic receptors can help prevent gene silencing. Here, we engineered heterologous maize promoters that regulate gene-specific expression in rice plant receptors. We performed a histochemical and quantitative β-glucuronidase (GUS) analysis of the Zea mays legumin1 (ZM-LEGF) gene promoter and detailed detection of stably transformed rice expressing the GUS gene under the control of the promoter of ZM-LEGF (pZM-LEGF) and its truncated promoters throughout development. When the promoter sequence was truncated, the location and intensity of GUS expression changed. The results suggest that the sequence from −140 to +41 is a critical region that confers the expression of the entire promoter. Truncation of pZM-LEG (3′-deleted region of pZM-LEGF) markedly increased the GUS activity, with the core cis-elements located in the −273 to −140 regions, namely pZM-LEG6. Detailed analysis of pZM-LEG6::GUS T2 transformant rice seeds and plant tissues at different developmental stages indicated that this promoter is an ideal vegetative tissue-specific promoter that can serve as a valuable tool for transgenic rice breeding and genetic engineering studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbitt, S. E, & Jung, R. (2007). Seed-preferred regulatory elements. In: Google Patents.

  2. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15, 63–78.

    Article  CAS  Google Scholar 

  3. Azria, D., & Bhalla, P. L. (2011). Agrobacterium-mediated transformation of Australian rice varieties and promoter analysis of major pollen allergen gene, Ory s 1. Plant Cell Reports, 30, 1673–1681.

    Article  CAS  Google Scholar 

  4. Block, M. D., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Movva, N. R., Thompson, C., Montagu, M. V., & Leemans, J. (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO Journal, 6, 2513–2518.

    CAS  Google Scholar 

  5. Borello, U., Ceccarelli, E., & Giuliano, G. (1993). Constitutive, light-responsive and circadian clock-responsive factors compete for different I box elements in plant light-regulated promoters. Plant Journal, 4, 611–619.

    Article  CAS  Google Scholar 

  6. Bustamante, C. A., Civello, P. M., & Martínez, G. A. (2009). Cloning of the promoter region of β-xylosidase (FaXyl1) gene and effect of plant growth regulators on the expression of FaXyl1 in strawberry fruit. Plant Science, 177, 49–56.

    Article  CAS  Google Scholar 

  7. Cai, M., Wei, J., Li, X., Xu, C., & Wang, S. (2007). A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnology Journal, 5, 664–674.

    Article  CAS  Google Scholar 

  8. Cheon, B. Y., Kim, H. J., Oh, K. H., Bahn, S. C., Ahn, J. H., Choi, J. W., Ok, S. H., Bae, J. M., & Shin, J. S. (2004). Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis. Transgenic Research, 13, 541–549.

    Article  CAS  Google Scholar 

  9. Chory, J., Chatterjee, M., Cook, R. K., Elich, T., Fankhauser, C., Li, J., Nagpal, P., Neff, M., Pepper, A., Poole, D., Reed, J., & Vitart, V. (1996). From seed germination to flowering, light controls plant development via the pigment phytochrome. Proceedings of the National Academy of Sciences of the United States of America, 93, 12066–12071

  10. Datta, K., Vasquez, A., Tu, J., Torrizo, L., Alam, M. F., Oliva, N., Abrigo, E., Khush, G., & Datta, S. K. (1998). Constitutive and tissue-specific differential expression of the cryIA(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theoretical and Applied Genetics, 97, 20–30.

    Article  CAS  Google Scholar 

  11. Degenhardt, J., & Tobin, E. M. (1996). A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell, 8, 31–41.

    Article  CAS  Google Scholar 

  12. Dietrich, R. A., Radke, S. E., & Harada, J. J. (1992). Downstream sequences are required to activate a gene expressed in the root cortex of embryos and seedlings. Plant Cell, 4, 1371–1382.

    Article  CAS  Google Scholar 

  13. Dunn, M. A., White, A. J., Vural, S., & Hughes, M. A. (1998). Identification of promoter elements in a low-temperature-responsive gene (blt 4.9) from barley (Hordeum vulgare L.). Plant Molecular Biology, 38, 551–564.

    Article  CAS  Google Scholar 

  14. Elmayan, T., & Tepfer, M. (1995). Evaluation in tobacco of the organ specificity and strength of therolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Research, 4, 388–396.

    Article  CAS  Google Scholar 

  15. Fujii, R., Yokoyama, R., & Uchimaya, H. (1994). Analysis of the RolC promoter region involved in somatic embryogenesis-related activation in carrot cell cultures. Plant Physiology, 104, 1151–1157.

    Article  CAS  Google Scholar 

  16. Grace, M. L., Chandrasekharan, M. B., Hall, T. C., & Crowe, A. J. (2004). Sequence and spacing of TATA box elements are critical for accurate initiation from the beta-phaseolin promoter. Journal of Biological Chemistry, 279, 8102–8110.

    Article  CAS  Google Scholar 

  17. Graham, M. W., Craig, S., & Waterhouse, P. M. (1997). Expression patterns of vascular-specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plants. Plant Molecular Biology, 33, 729–735.

    Article  CAS  Google Scholar 

  18. Green, P. J., Yong, M. H., Cuozzo, M., Kano-Murakami, Y., Silverstein, P., & Chua, N. (1988). Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO Journal, 7, 4035.

    CAS  Google Scholar 

  19. Han, L., Han, Y. N., & Xiao, X. G. (2013). Truncated cotton subtilase promoter directs guard cell-specific expression of foreign genes in tobacco and Arabidopsis. PLoS ONE, 8(3), e59802.

    Article  CAS  Google Scholar 

  20. Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research, 27(1), 297–300.

    Article  CAS  Google Scholar 

  21. Hsu, F. C., Sun, K., Kleier, D. A., & Fielding, M. J. (1995). Phloem mobility of xenobiotics VI. A phloem-mobile pro-nematicide based on oxamyl exhibiting root-specific activation in transgenic tobacco. Pesticide Science, 44, 9–19.

    Article  CAS  Google Scholar 

  22. Inagaki, Y., Truter, S., & Ramirez, F. (1994). Transforming growth factor-beta stimulates alpha 2 (I) collagen gene expression through a cis-acting element that contains a Sp1-binding site. Journal of Biological Chemistry, 269, 14828–14834.

    CAS  Google Scholar 

  23. Jang, I. C., Nahm, B. H., & Kim, J. K. (1999). Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Molecular Breeding, 5, 453–461.

    Article  CAS  Google Scholar 

  24. Jefferson, R. A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  25. Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S. H., Do Choi, Y., Kim, M., Reuzeau, C., & Kim, J. K. (2010). Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 153, 185–197.

    Article  CAS  Google Scholar 

  26. Kagaya, Y., Ohmiya, K., & Hattori, T. (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Research, 27, 470–478.

    Article  CAS  Google Scholar 

  27. Kawakatsu, T., Yamamoto, M. P., Hirose, S., Yano, M., & Takaiwa, F. (2008). Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. Journal of Experimental Botany, 59, 4233–4245.

    Article  CAS  Google Scholar 

  28. Komari, T., Hiei, Y., Saito, Y., Murai, N., & Kumashiro, T. (1996). Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant Journal, 10, 165–174.

    Article  CAS  Google Scholar 

  29. Kovalchuk, N., Smith, J., Bazanova, N., Pyvovarenko, T., Singh, R., Shirley, N., Ismagul, A., Johnson, A., Milligan, A. S., & Hrmova, M. (2012). Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. Journal of Experimental Botany, 63, 2025–2040.

    Article  CAS  Google Scholar 

  30. Koyama, T., Ono, T., Shimizu, M., Jinbo, T., Mizuno, R., Tomita, K., Mitsukawa, N., Kawazu, T., Kimura, & Ohmiya, K. (2005). Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice. Journal of Bioscience and Bioengineering, 99, 38–42.

    Article  CAS  Google Scholar 

  31. Kumar, G. M., Mamidala, P., & Podile, A. R. (2009). Regulation of polygalacturonase-inhibitory proteins in plants is highly dependent on stress and light responsive elements. Plant OMICS: Journal of Plant Molecular Biology & Omics, 2.

  32. Kumpatla, S. P., Chandrasekharan, M. B., & Lyer, L. M. (1998). Genome intruder scanning and modulation systems and transgene sileneing. Trends in Plant Science, 3(3), 96–104.

    Article  Google Scholar 

  33. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.

    Article  CAS  Google Scholar 

  34. Liu, Y., Wang, Z., & Jia, S. (2001). Effect of 5′-deletion of Arabidopsis profiling 2 promoter on its vascular specific expression. Chinese Science Bulletin, 46, 1627–1630.

    Article  CAS  Google Scholar 

  35. Matsuki, R., Onodera, H., Yamauchi, T., & Uchimiya, H. (1989). Tissue specific expression of the RolC promoter of the Ri plasmid in transgenic rice. Molecular and General Genetics, 220, 12–16.

    Article  CAS  Google Scholar 

  36. Matzke, M. A., Mette, M. F., & Matzke, A. J. M. (2000). Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology, 43, 401–415.

    Article  CAS  Google Scholar 

  37. Medberry, S. L., Lockhart, B. E. L., & Olszewski, N. E. (1992). The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell, 4, 185–192.

    Article  CAS  Google Scholar 

  38. Miki, B., & McHugh, S. (2004). Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of Biotechnology, 107, 193–232.

    Article  CAS  Google Scholar 

  39. Molla, K. A., Karmakar, S., Chanda, P. K., Ghosh, S., Sarkar, S. N., Datta, S. K., & Datta, K. (2013). Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Molecular Plant Pathology, 14(9), 910–922.

    Article  CAS  Google Scholar 

  40. Passardi, F., Tognolli, M., De Meyer, M., Penel, C., & Dunand, C. (2006). Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 223, 965–974.

    Article  CAS  Google Scholar 

  41. Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R. M., Almeraya, R., Yamaguchi-Shinozaki, K., & Hoisington, D. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47, 493–500.

    Article  CAS  Google Scholar 

  42. Plesch, G., Ehrhardt, T., & Mueller-Roeber, B. (2001). Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell specific gene expression. Plant Journal, 28, 455–464.

    Article  CAS  Google Scholar 

  43. Redman, J., Whitcraft, J., Johnson, C., & Arias, J. (2002). Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis. Plant Cell Reports, 21, 180–185.

    Article  CAS  Google Scholar 

  44. Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant Journal, 11, 513–523.

    Article  CAS  Google Scholar 

  45. Sekhon, R. S., Lin, H., Childs, K. L., Hansey, C. N., Buell, C. R., de Leon, N., & Kaeppler, S. M. (2011). Genome-wide atlas of transcription during maize development. Plant Journal, 66, 553–563.

    Article  CAS  Google Scholar 

  46. Shirsat, A., Wilford, N., Croy, R., & Boulter, D. (1989). Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Molecular and General Genetics, 215, 326–331.

    Article  CAS  Google Scholar 

  47. Simpson, S. D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., & Yamaguchi–Shinozaki, K. (2003). Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant Journal, 33, 259–270.

    Article  CAS  Google Scholar 

  48. Skadsen, R. W., Sathish, P., Federico, M. L., Abebe, T., Fu, J., & Kaeppler, H. F. (2002). Cloning of the promoter for a novel barley gene, Lem1, and its organ-specific promotion of Gfp expression in lemma and palea. Plant Molecular Biology, 49, 545–555.

    Article  CAS  Google Scholar 

  49. Suzuki, A., Wu, C. Y., Washida, H., & Takaiwa, F. (1998). Rice MYB protein OSMYB5 specifically binds to the AACA motif conserved among promoters of genes for storage protein glutelin. Plant Cell Physiology, 39, 555–559.

    Article  CAS  Google Scholar 

  50. Tjaden, G., Edwards, J. W., & Coruzzi, G. M. (1995). Cis-elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiology, 108, 1109–1117.

    Article  CAS  Google Scholar 

  51. Tolley, B. J., Woodfield, H., Wanchana, S., Bruskiewich, R., & Hibberd, J. M. (2012). Light-regulated and cell-specific methylation of the maize PEPC promoter. Journal of Experimental Botany, 63, 1381–1390.

    Article  CAS  Google Scholar 

  52. Torbert, K. A., Gopalraj, M., Medberry, S. L., Olszewski, N. E., & Somers, D. A. (1998). Expression of the Commelina yellow mottle virus promoter in transgenic oat. Plant Cell Reports, 17, 284–287.

    Article  CAS  Google Scholar 

  53. Tu, J., Zhang, G., Datta, K., Xu, C., He, Y., Zhang, Q., Khush, G. S., & Datta, S. K. (2000). Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta endotoxin. Nature Biotechnology, 18, 1101–1104.

    Article  CAS  Google Scholar 

  54. Vicente-Carbajosa, J., Moose, S. P., Parsons, R., & Schmidt, R. J. (1997). A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque 2. Proceedings of the National Academy of Sciences of the United States of America, 94, 7685–7690

  55. Wakasa, Y., & Takaiwa, F. (2012). Use of a callus-specific selection system to develop transgenic rice seed accumulating a high level of recombinant protein. Methods in Molecular Biology, 847, 467–479.

    Article  CAS  Google Scholar 

  56. Woo, Y. M., Hu, D. W. N., Larkins, B. A., & Jung, R. (2001). Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell, 13, 2297–2317.

    Article  CAS  Google Scholar 

  57. Wray, G. A., Hahn, M. W., Abouheif, E., Balhoff, J. P., Pizer, M., Rockman, M. V., & Romano, L. A. (2003). The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution, 20, 1377–1419.

    Article  CAS  Google Scholar 

  58. Xu, R., Zhao, H., Dinkins, R. D., Cheng, X., Carberry, G., & Li, Q. Q. (2006). The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Molecular Biology, 61, 799–815.

    Article  CAS  Google Scholar 

  59. Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7, 555–560.

    Article  CAS  Google Scholar 

  60. Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. Plant Journal, 17, 209–214.

    Article  CAS  Google Scholar 

  61. Yanagisawa, S., & Sheen, J. (1998). Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell, 10, 75–89.

    Article  CAS  Google Scholar 

  62. Ye, R. J., Huang, H. Q., Yang, Z., Chen, T. Y., Liu, L., Chen, H., & Lin, Y. J. (2009). Development of insect-resistant transgenic rice with Cry1C*-free endosperm. Pest Management Science, 65, 1015–1020.

    Article  CAS  Google Scholar 

  63. Ye, R., Zhou, F., & Lin, Y. (2012). Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L ssp.). Plant Cell Reports, 31, 1159–1172.

    Article  CAS  Google Scholar 

  64. Zhang, J. Z., Santes, C. M., Engel, M. L., Gasser, C. S., & Harada, J. J. (1996). DNA sequences that activate isocitratelyase gene expression during late embryogenesis and during postgerminative growth. Plant Physiology, 110, 1069–1079.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support was provided by the National Major Special Project of China on New Varieties Cultivation for Transgenic Organisms (2011ZX08-010-002-003), the Genetically Modified Organisms Breeding Major Projects (2013ZX003-002), and the Scientific Research Projects of Anhui (KJ2012A118, 1408085MC47).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xiang or Beijiu Cheng.

Additional information

Qing Dong and Haiyang Jiang are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Jiang, H., Xu, Q. et al. Cloning and Characterization of a Multifunctional Promoter from Maize (Zea mays L.). Appl Biochem Biotechnol 175, 1344–1357 (2015). https://doi.org/10.1007/s12010-014-1277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1277-4

Keywords

Navigation