Skip to main content
Log in

Semi-pilot Scale Microbial Oil Production by Trichosporon cutaneum Using Medium Containing Corncob Acid Hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, semi-pilot scale microbial oil production by Trichosporon cutaneum using medium containing corncob acid hydrolysate was carried out in a 50-L fermentor. Scale up showed no negative influence on lipid fermentation that no obvious lag phase was observed. Both glucose and xylose could be utilized simultaneously by T. cutaneum, but the utilization rate of xylose was much slower than that of glucose. After 7.6 days of fermentation, the biomass, lipid content, and lipid yield were 21.8 g/L, 53.7 %, and 11.7 g/L, respectively. Also, a high lipid coefficient (lipid yield on sugars consumption) of 26.3 was obtained. Besides microbial oil, polysaccharide was another main product of lipid fermentation that the remaining biomass residue full of polysaccharides after lipid extraction could be one important by-product in future. Overall, this study showed the great potential of industrialization for lipid production by T. cutaneum on low-cost substrates especially for lignocellulosic hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part II: technology and potential applications. European Journal of Lipid Science and Technology, 113, 1052–1073.

    Article  CAS  Google Scholar 

  2. Huang, C., Chen, X. F., Xiong, L., Chen, X. D., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances, 31, 129–139.

    Article  CAS  Google Scholar 

  3. Leiva-Candia, D., Pinzi, S., Redel-Macías, M., Koutinas, A., Webb, C., & Dorado, M. (2014). The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel, 123, 33–42.

    Article  CAS  Google Scholar 

  4. Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass and Bioenergy, 33, 573–580.

    Article  CAS  Google Scholar 

  5. Economou, C. N., Aggelis, G., Pavlou, S., & Vayenas, D. (2011). Single cell oil production from rice hulls hydrolysate. Bioresource Technology, 102, 9737–9742.

    Article  CAS  Google Scholar 

  6. Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E., German, J. B., & Boundy-Mills, K. L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances, 32, 1336–1360.

    Article  CAS  Google Scholar 

  7. Gao, Q., Cui, Z., Zhang, J., & Bao, J. (2014). Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Bioresource Technology, 152, 552–556.

    Article  CAS  Google Scholar 

  8. Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H., & Zhao, Z. K. (2011). Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnology for Biofuels, 4, 25.

    Article  CAS  Google Scholar 

  9. Chen, X. F., Huang, C., Xiong, L., Chen, X. D., & Ma, L. L. (2012). Microbial oil production from corncob acid hydrolysate by Trichosporon cutaneum. Biotechnology Letters, 34, 1025–1028.

    Article  CAS  Google Scholar 

  10. Chen, X. F., Huang, C., Yang, X. Y., Xiong, L., Chen, X. D., & Ma, L. L. (2013). Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technology, 143, 18–24.

    Article  CAS  Google Scholar 

  11. Sitepu, I. R., Sestric, R., Ignatia, L., Levin, D., German, J. B., Gillies, L. A., Almada, L. A. G., & Boundy-Mills, K. L. (2013). Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technology, 144, 360–369.

    Article  CAS  Google Scholar 

  12. Wang, Y., Gong, Z., Yang, X., Shen, H., Wang, Q., Wang, J., & Zhao, Z. K. (2015). Microbial lipid production from pectin-derived carbohydrates by oleaginous yeasts. Process Biochemistry, 50, 1097–1102.

    Article  CAS  Google Scholar 

  13. Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113, 1031–1051.

    Article  CAS  Google Scholar 

  14. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86, 807–815.

    Article  CAS  Google Scholar 

  15. Bellou, S., & Aggelis, G. (2013). Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of Biotechnology, 164, 318–329.

    Article  Google Scholar 

  16. Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32, 1476–1493.

    Article  CAS  Google Scholar 

  17. Tchakouteu, S. S., Chatzifragkou, A., Kalantzi, O., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2015). Oleaginous yeast Cryptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. European Journal of Lipid Science and Technology, 117, 657–672.

    Article  CAS  Google Scholar 

  18. Tchakouteu, S., Kalantzi, O., Gardeli, C., Koutinas, A., Aggelis, G., & Papanikolaou, S. (2015). Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. Journal of Applied Microbiology, 118, 911–927.

    Article  CAS  Google Scholar 

  19. Bellou, S., Triantaphyllidou, I.-E., Aggeli, D., Elazzazy, A. M., Baeshen, M. N., & Aggelis, G. (2016). Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology, 37, 24–35.

    Article  CAS  Google Scholar 

  20. Xue, F., Miao, J., Zhang, X., Luo, H., & Tan, T. W. (2008). Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresource Technology, 99, 5923–5927.

    Article  CAS  Google Scholar 

  21. Folch, J., Lees, M., & Sloane-Stanley, G. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  22. Xiong, L., Huang, C., Yang, X. Y., Lin, X. Q., Chen, X. F., Wang, C., Wang, B., Zeng, X. A., & Chen, X. D. (2015). Beneficial effect of corncob acid hydrolysate on the lipid production by oleaginous yeast Trichosporon dermatis. Preparative Biochemistry and Biotechnology, 45, 421–429.

    Article  CAS  Google Scholar 

  23. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  24. Liu, Y., Wang, Y., Liu, H., & Zhang, J. A. (2015). Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresource Technology, 180, 32–39.

    Article  CAS  Google Scholar 

  25. Ruan, Z., Zanotti, M., Archer, S., Liao, W., & Liu, Y. (2014). Oleaginous fungal lipid fermentation on combined acid-and alkali-pretreated corn stover hydrolysate for advanced biofuel production. Bioresource Technology, 163, 12–17.

    Article  CAS  Google Scholar 

  26. Kogani, G., Pajtinka, M., Babincova, M., Miadokova, E., Rauko, P., Slamenova, D., & Korolenko, T. (2008). Yeast cell wall polysaccharides as antioxidants and antimutagens: can they fight cancer? Minireview. Neoplasma, 55, 387–393.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundation of China (51378486, 51508547), the Youth Innovation Promotion Association CAS (2015290), the Science and Technology Project of Guangdong Province (2013B010404036), project of the Guangzhou Science and Technology (2013J4300031), and the Foundation of Director of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (y107r41001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-De Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, GX., Huang, C., Chen, XF. et al. Semi-pilot Scale Microbial Oil Production by Trichosporon cutaneum Using Medium Containing Corncob Acid Hydrolysate. Appl Biochem Biotechnol 179, 625–632 (2016). https://doi.org/10.1007/s12010-016-2019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2019-6

Keywords

Navigation