Skip to main content

Advertisement

Log in

Construction and Analysis of an Adipose Tissue-Specific and Methylation-Sensitive Promoter of Leptin Gene

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

DNA methylation plays a very important role in the regulation of gene expression. Under general situations, methylation in a gene promoter region is frequently accompanied by transcriptional suppression, and those genes that are highly methylated display the phenomenon of low expression. In contrast, those genes whose methylation level is low display the phenomenon of active expression. In this study, we conducted DNA methylation analysis on the CpG sites within the promoter regions of five adipose tissue-specific transcriptional factors—Adiponectin, Chemerin, Leptin, Smaf-1, and Vaspin—and examined their messenger RNA (mRNA) expression levels in different mouse tissues. We also performed analyses on the correlation between the DNA methylation levels of these genes and their mRNA expression levels in these tissues. The correlation coefficient for Leptin was the highest, and it displayed a high expression in an adipose tissue-specific manner. Thus, we cloned the regulatory region of Leptin gene and incorporated its promoter into the eukaryotic expression vector pEGFP-N1 and constructed a recombinant plasmid named pEGFP-N1-(p-Lep). This recombinant plasmid was first verified by DNA sequencing and then transfected into mouse pre-adipocytes via electroporation. Measurement of the activity of luciferase (reporter) indicated that p-Lep was capable of driving the expression of the reporter gene. This study has paved a solid basis for subsequent studies on generating transgenic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tarutani, Y., Shiba, H., Iwano, M., Kakizaki, T., Suzuki, G., Watanabe, M., Isogai, A., & Takayama, S. (2010). Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature, 466(7309), 983–986.

    Article  CAS  Google Scholar 

  2. Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11(3), 204–220.

    Article  CAS  Google Scholar 

  3. Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13(7), 484–492.

    Article  CAS  Google Scholar 

  4. Seisenberger, S., Peat, J. R., Hore, T. A., Santos, F., Dean, W., & Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 368(1609), 20110330.

    Article  Google Scholar 

  5. Kim, A. Y., Park, Y. J., Pan, X., Shin, K. C., Kwak, S. H., Bassas, A. F., Sallam, R. M., Park, K. S., Alfadda, A. A., Xu, A., & Kim, J. B. (2015). Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nature Communications, 6, 7585.

    Article  Google Scholar 

  6. Houde, A. A., Légaré, C., Biron, S., Lescelleur, O., Biertho, L., Marceau, S., Tchernof, A., Vohl, M. C., Hivert, M. F., & Bouchard, L. (2015). Leptin and adiponectin DNA methylation levels in adipose tissues and blood cells are associated with BMI, waist girth and LDL-cholesterol levels in severely obese men and women. BMC Medical Genetics, 16, 29.

    Article  Google Scholar 

  7. Konieczna, J., García, A. P., Sánchez, J., Palou, M., Palou, A., & Picó, C. (2013). Oral leptin treatment in suckling rats ameliorates detrimental effects in hypothalamic structure and function caused by maternal caloric restriction during gestation. PLoS One, 8(11), e81906.

    Article  Google Scholar 

  8. Younes-Rapozo, V., Moura, E. G., Manhães, A. C., Pinheiro, C. R., Santos-Silva, A. P., de Oliveira, E., & Lisboa, P. C. (2013). Maternal nicotine exposure during lactation alters hypothalamic neuropeptides expression in the adult rat progeny. Food and Chemical Toxicology, 58, 158–168.

    Article  CAS  Google Scholar 

  9. Kim, J. Y., Tillison, K., & Smas, C. M. (2005). Cloning, expression, and differentiation-dependent regulation of SMAF1 in adipogenesis. Biochemical and Biophysical Research Communications, 326, 36–44.

    Article  CAS  Google Scholar 

  10. Benton, M. C., Johnstone, A., Eccles, D., Harmon, B., Hayes, M. T., Lea, R. A., Griffiths, L., Hoffman, E. P., Stubbs, R. S., & Macartney-Coxson, D. (2015). An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biology, 16, 8.

    Article  CAS  Google Scholar 

  11. Goralski, K. B., McCarthy, T. C., Hanniman, E. A., Zabel, B. A., Butcher, E. C., Parlee, S. D., Muruganandan, S., & Sinal, C. J. (2007). Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. Journal of Biological Chemistry, 282(38), 28175–28188.

    Article  CAS  Google Scholar 

  12. Youn, B. S., Klöting, N., Kratzsch, J., Lee, N., Park, J. W., Song, E. S., Ruschke, K., Oberbach, A., Fasshauer, M., Stumvoll, M., & Blüher, M. (2008). Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes, 57(2), 372–377.

    Article  CAS  Google Scholar 

  13. Kloting, N., Berndt, J., & Kralisch, S. (2006). Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochemical and Biophysical Research Communications, 339(1), 430–436.

    Article  Google Scholar 

  14. Paik, J., Fierce, Y., Treuting, P. M., Brabb, T., & Maggio-Price, L. (2013). High-fat diet-induced obesity exacerbates inflammatory bowel disease in genetically susceptible Mdr1a−/− male mice. Journal of Nutrition, 143(8), 1240–1247.

    Article  CAS  Google Scholar 

  15. Böhm, C., Benz, V., Clemenz, M., Sprang, C., Höft, B., Kintscher, U., & Foryst-Ludwig, A. (2013). Sexual dimorphism in obesity-mediated left ventricular hypertrophy. American Journal of Physiology. Heart and Circulatory Physiology, 305(2), H211–H218.

    Article  Google Scholar 

  16. Melzner, I., Scott, V., Dorsch, K., Fischer, P., Wabitsch, M., Brüderlein, S., Hasel, C., & Möller, P. (2002). Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. Journal of Biological Chemistry, 277(47), 45420–45427.

    Article  CAS  Google Scholar 

  17. Yokomori, N., Tawata, M., & Onaya, T. (2002). DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells. Diabetologia, 45(1), 140–148.

    Article  CAS  Google Scholar 

  18. Smallwood, S. A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., Sato, S., Hata, K., Andrews, S. R., & Kelsey, G. (2011). Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nature Genetics, 43, 811–814.

    Article  CAS  Google Scholar 

  19. Gordon, K., Clouaire, T., Bao, X. X., Kemp, S. E., Xenophontos, M., de Las Heras, J. I., & Stancheva, I. (2014). Immortality, but not oncogenic transformation, of primary human cells leads to epigenetic reprogramming of DNA methylation and gene expression. Nucleic Acids Research, 42(6), 3529–3541.

    Article  CAS  Google Scholar 

  20. Aithal, M. G., & Rajeswari, N. (2013). Role of Notch signaling pathway in cancer and its association with DNA methylation. Journal of Genetics, 92(3), 667–675.

    Article  CAS  Google Scholar 

  21. Meyer, P. (2011). DNA methylation systems and targets in plants. FEBS Letters, 585(13), 2008–2015.

    Article  CAS  Google Scholar 

  22. Feldmann, A., Ivanek, R., Murr, R., Gaidatzis, D., Burger, L., & Schübeler, D. (2013). Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genetics, 9(12), e1003994.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (31072032), National Transgenic Biology Program of China (2011ZX08008-003), and Taishan Scholar Construction Foundation, P.R. China (631114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huansheng Dong or Qingjie Pan.

Additional information

Qinkai Zhang and Denggao Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xu, D., Zhang, M. et al. Construction and Analysis of an Adipose Tissue-Specific and Methylation-Sensitive Promoter of Leptin Gene. Appl Biochem Biotechnol 180, 1213–1226 (2016). https://doi.org/10.1007/s12010-016-2162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2162-0

Keywords

Navigation