Skip to main content
Log in

Anaerobic Co-Digestion of Vegetable and Fruit Market Waste in LBR + CSTR Two-Stage Process for Waste Reduction and Biogas Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vegetable and fruit waste (VFW) is becoming a heavy burden of municipal waste disposal because of its huge amount, but it is a potentially valuable resource that can be developed into high value products such as methane. Conventional anaerobic digestion processes are not suitable for solving the problem of easy acidification of VFW. Thus, a two-stage laboratory-scale anaerobic digestion system was assembled for waste reduction and biogas production of VFW in the mesophilic temperatures. The biphasic system consists of a 70-L leach bed reactor (LBR) and a 35-L continuous stirred tank reactor (CSTR). Water is sprinkled over the material to enhance the extraction process of acidification phase. The leachate was then transferred to the CSTR for biogas production. Batch digestion was lasted 120 h until no biogas was produced. Leachate with a volatile fatty acid (VFA) concentration of 7.6 g/L was obtained within 10 h. The results showed that overall 70.9% of the volatile solids (VS) was removed in the solid-phase system. Over 90% of VFAs were reduced in the methanogenic reactor, and it has been observed that the maximum biogas production rate was 51.26 mL/(d gVS). The maximum methane concentration in the produced biogas was 71%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K., Chen, L., & Gan, H. (2011). Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. Journal of Environmental Sciences (China), 23(8), 1403–1408.

    Article  CAS  Google Scholar 

  2. Wang, Y., Zang, B., Liu, Y., & Li, G. (2018). Classification and management of kitchen waste: Disposals and proposals in Chaoyang district, Beijing, China. Journal of Material Cycles and Waste Management, 20(1), 461–468.

    Article  Google Scholar 

  3. Ji, C., Kong, C.-X., Mei, Z.-L., & Li, J. (2017). A review of the anaerobic digestion of fruit and vegetable waste. Applied Biochemistry and Biotechnology, 183(3), 906–922.

    Article  CAS  PubMed  Google Scholar 

  4. Traverso, P., Pavan, P., Bolzonella, D., Innocenti, L., Cecchi, F., & Mata-Alvarez, J. (2000). Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation, 11(6), 407–414.

    Article  CAS  PubMed  Google Scholar 

  5. Lata, K., Rajeshwari, K. V., Pant, D. C., & Kishore, V. V. N. (2002). Volatile fatty acid production during anaerobic mesophilic digestion of tea and vegetable market wastes. World Journal of Microbiology and Biotechnology, 18(6), 589–592.

    Article  CAS  Google Scholar 

  6. Chen, M., Yao, X.-Z., Ma, R.-C., Song, Q.-C., Long, Y., & He, R. (2017). Methanethiol generation potential from anaerobic degradation of municipal solid waste in landfills. Environmental Science and Pollution Research, 24(30), 23992–24001.

    Article  CAS  PubMed  Google Scholar 

  7. Sharma, V. K., Testa, C., Lastella, G., Cornacchia, G., & Comparato, M. P. (2000). Inclined-plug-flow type reactor for anaerobic digestion of semi-solid waste. Applied Energy, 65(1-4), 173–185.

    Article  CAS  Google Scholar 

  8. Forster-Carneiro, T., Perez, M., & Romero, L. I. (2008). Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 99(15), 6994–7002.

    Article  CAS  PubMed  Google Scholar 

  9. Bouallagui, H., Lahdheb, H., Ben Romdan, E., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90(5), 1844–1849.

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Pena, E. I., Parameswaran, P., Kang, D. W., Canul-Chan, M., & Krajmalnik-Brown, R. (2011). Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresource Technology, 102(20), 9447–9455.

    Article  CAS  PubMed  Google Scholar 

  11. Agdag, O. N., & Sponza, D. T. (2005). Co-digestion of industrial sludge with municipal solid wastes in anaerobic simulated landfilling reactors. Process Biochemistry, 40(5), 1871–1879.

    Article  CAS  Google Scholar 

  12. Habiba, L., Hassib, B., & Moktar, H. (2009). Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresource Technology, 100(4), 1555–1560.

    Article  CAS  PubMed  Google Scholar 

  13. Molinuevo-Salces, B., Garcia-Gonzalez, M. C., Gonzalez-Fernandez, C., Cuetos, M. J., Moran, A., & Gomez, X. (2010). Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresource Technology, 101(24), 9479–9485.

    Article  CAS  PubMed  Google Scholar 

  14. Bouallagui, H., Rachdi, B., Gannoun, H., & Hamdi, M. (2009). Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation, 20(3), 401–409.

    Article  CAS  PubMed  Google Scholar 

  15. Climenhaga, M. A., & Banks, C. J. (2008). Uncoupling of liquid and solid retention times in anaerobic digestion of catering wastes. Water Science and Technology, 58(8), 1581–1587.

    Article  CAS  PubMed  Google Scholar 

  16. De La Rubia, M. A., Raposo, F., Rincon, B., & Borja, R. (2009). Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresource Technology, 100(18), 4133–4138.

    Article  CAS  PubMed  Google Scholar 

  17. Ravi, P. P., Lindner, J., Oechsner, H., & Lemmer, A. (2018). Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste. Bioresource Technology, 247, 96–102.

    Article  CAS  PubMed  Google Scholar 

  18. Li, D., Yuan, Z. H., & Sun, Y. M. (2010). Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresource Technology, 101, 2722–2728.

    Article  CAS  Google Scholar 

  19. Lv, W., Schanbacher, F. L., & Yu, Z. T. (2010). Putting microbes to work in sequence: Recent advances in temperature-phased anaerobic digestion processes. Bioresource Technology, 101(24), 9409–9414.

    Article  CAS  PubMed  Google Scholar 

  20. Ge, J., Huang, G., Li, J., & Han, L. (2018). Particle-scale visualization of the evolution of methanogens and methanotrophs and its correlation with CH4 emissions during manure aerobic composting. Waste Management, 78, 135–143.

    Article  CAS  Google Scholar 

  21. Chakraborty, D., & Mohan, S. V. (2018). Effect of food to vegetable waste ratio on acidogenesis and methanogenesis during two-stage integration. Bioresource Technology, 254, 256–263.

    Article  CAS  PubMed  Google Scholar 

  22. Li, K., Liu, R., Cui, S., Yu, Q., & Ma, R. (2018). Anaerobic co-digestion of animal manures with corn stover or apple pulp for enhanced biogas production. Renewable Energy, 118, 335–342.

    Article  CAS  Google Scholar 

  23. Raynal, J., Delgenes, J. P., & Moletta, R. (1998). Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process. Bioresource Technology, 65(1-2), 97–103.

    Article  CAS  Google Scholar 

  24. Bouallagui, H., Ben Cheikh, R., Marouani, L., & Hamdi, M. (2003). Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology, 86(1), 85–89.

    Article  CAS  PubMed  Google Scholar 

  25. Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353–5360.

    Article  CAS  PubMed  Google Scholar 

  26. Speece, R. E., Boonyakitsombut, S., Kim, M., Azbar, N., & Ursillo, P. (2006). Overview of anaerobic treatment: Thermophilic and propionate implications. Water Environment Research, 78(5), 460–473.

    Article  CAS  PubMed  Google Scholar 

  27. Hills, D. J., & Nakano, K. (1984). Effects of particle-size on anaerobic-digestion of tomato solid-wastes. Agricultural Wastes, 10(4), 285–295.

    Article  CAS  Google Scholar 

  28. Ge, J., Huang, G., Huang, J., Zeng, J., & Han, L. (2015). Mechanism and kinetics of organic matter degradation based on particle structure variation during pig manure aerobic composting. Journal of Hazardous Materials, 292, 19–26.

    Article  CAS  PubMed  Google Scholar 

  29. Sanders, W. T. M., Geerink, M., Zeeman, G., & Lettinga, G. (2000). Anaerobic hydrolysis kinetics of particulate substrates. Water Science and Technology, 41(3), 17–24.

    Article  CAS  PubMed  Google Scholar 

  30. Ge, J., Huang, G., Huang, J., Zeng, J., & Han, L. (2016). Particle-scale modeling of methane emission during pig manure/wheat straw aerobic composting. Environmental Science & Technology, 50(8), 4374–4383.

    Article  CAS  Google Scholar 

  31. Tumutegyereize, P., Muranga, F. I., Kawongolo, J., & Nabugoomu, F. (2011). Optimization of biogas production from banana peels: Effect of particle size on methane yield. African Journal of Biotechnology, 10, 18243–18251.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by GDAS’ Project of Science and Technology Development (2017GDASC X-0705,2018GDASC,X-1009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Yu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WY., Liao, B. Anaerobic Co-Digestion of Vegetable and Fruit Market Waste in LBR + CSTR Two-Stage Process for Waste Reduction and Biogas Production. Appl Biochem Biotechnol 188, 185–193 (2019). https://doi.org/10.1007/s12010-018-2910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2910-4

Keywords

Navigation