Skip to main content

Advertisement

Log in

AI-based computer-aided diagnosis (AI-CAD): the latest review to read first

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

The third artificial intelligence (AI) boom is coming, and there is an inkling that the speed of its evolution is quickly increasing. In games like chess, shogi, and go, AI has already defeated human champions, and the fact that it is able to achieve autonomous driving is also being realized. Under these circumstances, AI has evolved and diversified at a remarkable pace in medical diagnosis, especially in diagnostic imaging. Therefore, this commentary focuses on AI in medical diagnostic imaging and explains the recent development trends and practical applications of computer-aided detection/diagnosis using artificial intelligence, especially deep learning technology, as well as some topics surrounding it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

taken from the homepage of former R2 Technology, Inc. Los Altos CA, USA, now Hologic)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. On December 6, 2018, approval for the software to determine if it is a neoplastic polyp or not with possibility shown as a number in the super-magnifying endoscope was freshly obtained, based on the Pharmaceuticals and Medical Devices Law in Japan. Support vector machine (SVM) type machine learning instead of deep learning is used in this system.

  2. The American College of Radiology (ACR) Data Science Institute (DSI) has created a new resource for radiology researchers. A complete list of AI algorithms cleared by the FDA related to medical imaging, published on the ACR DSI website, is said to be updated regularly. https://www.acrdsi.org/DSI-Services/FDA-Cleared-AI-Algorithms

References

  1. von Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol. 2017;10(1):23–322.

    PubMed  PubMed Central  Google Scholar 

  2. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.

    PubMed  Google Scholar 

  3. Shen D, Wu G, Suk H. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ker J, Wang L, Rao J, Lim T. Deep learning applications in medical image analysis. IEEE Access. 2018;6:9375–89.

    Google Scholar 

  5. Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46(1):e1–e36.

    PubMed  Google Scholar 

  6. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290(3):590–606.

    PubMed  Google Scholar 

  7. Kaji S, Kida S. Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol. 2019;12(3):235–48.

    PubMed  Google Scholar 

  8. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent. 2019;49(1):1–7.

    PubMed  PubMed Central  Google Scholar 

  9. Lee G, Fujita H. Deep learning in medical image analysis: challenges and applications. Cham: Springer; 2020 (in press).

    Google Scholar 

  10. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4–5):198–21111.

    PubMed  PubMed Central  Google Scholar 

  11. Gao Y, Geras KJ, Lewin AA, Moy L. New frontiers: an update on computer-aided diagnosis for breast imaging in the age of artificial intelligence. AJR Am J Roentgenol. 2019;212:300–7.

    PubMed  PubMed Central  Google Scholar 

  12. Freer TW, Ulissey MJ. Screening mammography with computer aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001;220(3):781–6.

    CAS  PubMed  Google Scholar 

  13. Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D'Orsi C, Berns EA, Cutter G, Hendrick RE, Barlow WE, Elmore JG. Influence of computer-aided detection on performance of screening mammography. N Engl J Med. 2007;356(14):1399–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Breast cancer surveillance consortium. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828–37.

    PubMed  PubMed Central  Google Scholar 

  15. Kobli A, Jha S. Why CAD failed in mammography. J Am Coll Radiol. 2018;15(3):535–7.

    Google Scholar 

  16. Zhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys. 2017;44(10):5221–333.

    PubMed  Google Scholar 

  17. Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, Back T, Chopra R, Pontikos N, Kern C, Moraes G, Schmid MK, Sim D, Balaskas K, Bachmann LM, Denniston AK, Keane PA. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit Health. 2019;1(5):e232–e242242.

    PubMed  Google Scholar 

  18. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). Honolulu: IEEE; 2017. p. 2097–106. https://doi.org/10.1109/CVPR.2017.369, http://openaccess.thecvf.com/content_cvpr_2017/papers/Wang_ChestX-ray8_Hospital-Scale_Chest_CVPR_2017_paper.pdf.

  19. https://nihcc.app.box.com/v/DeepLesion. Accessed 28 Dec 2019.

  20. https://stanfordmlgroup.github.io/competitions/chexpert/. Accessed 28 Dec 2019.

  21. Dunnmon J, Yi D, Langlots CP, Ré C, Rubin DL, Lungren MP. Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology. 2019;290(2):537–44.

    PubMed  Google Scholar 

  22. Abdelhafiz D, Yang C, Ammar R, Nabavi S. Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinform. 2019;20(Suppl 11):281.

    Google Scholar 

  23. https://www.cancerimagingarchive.net/. Accessed 28 Dec 2019.

  24. Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging. 2016;3(3):034501.

    Google Scholar 

  25. Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016;43:6654–66.

    PubMed  PubMed Central  Google Scholar 

  26. Kim M, Lee H, Song K, Sehyo Y, Ramaraj P, Lee C, Baik J, Do S. GrayNet: a versatile base model for practical deep learning CT applications. In: Proc. of Conference on Machine Intelligence in Medical Imaging (C-MIMI), 2-page extended abstract is available from C-MIMI 2019 website, Austin, TX, Sep. 22–23, 2019.

  27. https://github.com/MGH-LMIC/graynet_keras. Accessed 28 Dec 2019.

  28. https://devblogs.nvidia.com/annotation-transfer-learning-clara-train/. Accessed 28 Dec 2019.

  29. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal. 2019;58:101552.

    PubMed  Google Scholar 

  30. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018;321:321–31.

    Google Scholar 

  31. Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, Imaizumi K, Fujita H. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. Biomed Res Int. 2019;9:6051939.

    Google Scholar 

  32. Onishi Y, Teramoto A, Tsujimoto M, Tsukamoto T, Saito K, Toyama H, Imaizumi K, Fujita H. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Int J Comput Assist Radiol Surg. 2019. https://doi.org/10.1007/s11548-019-02092-z.

    Article  PubMed  Google Scholar 

  33. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html. Accessed 28 Dec 2019.

  34. Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, Rosen B, Rubin DL, Kalpathy-Cramer J. Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc. 2018;25(8):945–54.

    PubMed  PubMed Central  Google Scholar 

  35. https://www.intel.ai/federated-learning-for-medical-imaging/#gs.9988iz. Accessed 28 Dec 2019.

  36. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation, Lecture notes in computer science book series (Volume 11383). Brainlesion. 2019;11383:92–104.

    PubMed  PubMed Central  Google Scholar 

  37. Beyer F, Zierott L, Fallenberg EM, Juergens KU, Stoeckel J, Heindel W, Wormanns D. Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader. Eur Radiol. 2007;17(11):2941–7.

    CAS  PubMed  Google Scholar 

  38. Samulski M, Hupse R, Boetes C, Mus RDM, den Heeten GJ, Karssemeijer N. Using computer-aided detection in mammography as a decision support. Eur Radiol. 2010;20(10):2323–30.

    PubMed  PubMed Central  Google Scholar 

  39. Rodríguez-Ruiz A, Krupinski E, Mordang J-J, Schilling K, Heywang-Köbrunner SH, Sechopoulos I, Ritse Mann RM. Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290(2):305–14.

    PubMed  Google Scholar 

  40. Kyono T, Gilbert FJ, van der Schaar M. Improving workflow efficiency for mammography using machine learning. J Am Coll Radiol. 2019. https://doi.org/10.1016/j.jacr.2019.05.012.

    Article  PubMed  Google Scholar 

  41. PSEHB/MDED (Yakuseikisinn). Notification 0523 No. 2, May 23, 2019, Japan. Appendix 4. Guidance for evaluation of artificial intelligence-assisted medical imaging systems for clinical diagnosis. 2019. http://dmd.nihs.go.jp/jisedai/tsuuchi/index.html. Accessed 31 Dec 2019.

  42. US Food and Drug Administration. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD)—discussion paper and request for feedback. 2019. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device. Accessed 29 Dec 2019.

  43. Goldenberg R, Peled N. Computer-aided simple triage. Int J Comput Assist Radiol Surg. 2011;6(5):705–11.

    PubMed  Google Scholar 

  44. Muramatsu C. Overview of subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11(2):109–24.

    PubMed  Google Scholar 

  45. Owais M, Arsalan M, Choi J, Park KR. Effective diagnosis and treatment through content-based medical image retrieval (CBMIR) by using artificial intelligence. J Clin Med. 2019;8(4):462.

    PubMed Central  Google Scholar 

  46. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.

    PubMed  Google Scholar 

  47. Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. Radiogenomics: bridging imaging and genomics. Abdom Radiol. 2019;44(6):1960–84.

    Google Scholar 

  48. Kai C, Uchiyama Y, Shiraishi J, Fujita H, Doi K. Computer-aided diagnosis with radiogenomics: analysis of the relationship between genotype and morphological changes of the brain magnetic resonance images. Radiol Phys Technol. 2018;11(3):265–73.

    PubMed  Google Scholar 

  49. Yoon H-J, Ramanathan A, Alamudun F, Tourassi G. Deep radiogenomics for predicting clinical phenotypes in invasive breast cancer. In: Proc. SPIE 10718, 14th International Workshop on Breast Imaging (IWBI 2018), 2018. p. 107181H.

  50. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    PubMed  Google Scholar 

  51. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.

    PubMed  Google Scholar 

  52. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, Kalloo A, Hassen ABH, Thomas L, Enk A, Uhlmann L. Reader study level-I and level-II Groups. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.

    CAS  PubMed  Google Scholar 

  54. Bejnordi BE, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.

    Google Scholar 

  55. Mayo RC, Kent D, Sen LC, Kapoor M, Leung JWT, Watanabe AT. Reduction of false-positive markings on mammograms: a retrospective comparison study using artificial intelligence-base CAD. J Dig Imag. 2019;32(4):618–24.

    Google Scholar 

  56. Aboutalib SS, Mohamed AA, Berg WA, Zuley ML, Sumkin JH, Wu S. Deep learning to distinguish recalled but benign mammography images in breast cancer screening. Clin Cancer Res. 2018;24(23):5902–9.

    PubMed  PubMed Central  Google Scholar 

  57. Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, Jastrzebski S, Fevry T, Katsnelson J, Kim E, Wolfson S, Parikh U, Gaddam S, Lin LLY, Ho K, Weinstein JD, Reig B, Gao Y, Pysarenko HTK, Lewin A, Lee J, Airola K, Mema E, Chung S, Hwang E, Samreen N, Kim SG, Heacock L, Moy L, Cho K, Geras KJ. Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging. 2019. https://doi.org/10.1109/TMI.2019.2945514.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hwang EJ, Park S, Jin KN. Development and validation of a deep learning–based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2(3):e191095.

    PubMed  PubMed Central  Google Scholar 

  59. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, Naidich DP, Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954–61.

    CAS  PubMed  Google Scholar 

  60. Abràmoff MD, Lavin PT, Birch M, Shah NA, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digit Med. 2018;1:39.

    PubMed  PubMed Central  Google Scholar 

  61. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, Mahendiran T, Moraes G, Shamdas M, Kern C, Ledsam JR, Schmid MK, Balaskas K, Topol EJ, Bachmann LM, Keane PA, Denniston AK. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1(6):e271–e297297.

    PubMed  Google Scholar 

  62. Langlotz C, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD, Wang G, Kandarpa K. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology. 2019;291(3):781–91.

    PubMed  Google Scholar 

  63. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipandle PV, Brink JA, Dreyer KJ. Current applications and future impact of machine learning in radiology. Radiology. 2018;288(2):318–28.

    PubMed  Google Scholar 

  64. https://aimi.stanford.edu/news/rsna-2017-rads-who-use-ai-will-replace-rads-who-don-t. Accessed 28 Dec 2019.

  65. Walter M. Radiologists, AI an accurate combination for detecting breast cancer. AI in Healthcare. 2019. https://www.aiin.healthcare/topics/medical-imaging/radiologists-ai-accurate-breast-cancer-mammography. Accessed 29 Dec 2019.

Download references

Funding

This research was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 19H03599) and (C) (No. 19K10347), by the Japan Society for the Promotion of Science, and also in part by a Collaborative Research Grant from EyeTech Co., Ltd., Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Fujita.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, H. AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13, 6–19 (2020). https://doi.org/10.1007/s12194-019-00552-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-019-00552-4

Keywords

Navigation